Daniel Kennefick on No Shadow of a Doubt

In 1919, British scientists led extraordinary expeditions to Brazil and Africa to test Albert Einstein’s revolutionary new theory of general relativity in what became the century’s most celebrated scientific experiment. The result ushered in a new era and made Einstein a global celebrity by confirming his dramatic prediction that the path of light rays would be bent by gravity. Today, Einstein’s theory is scientific fact. Yet the effort to “weigh light” by measuring the gravitational deflection of starlight during the May 29, 1919, solar eclipse has become clouded by myth and skepticism. In No Shadow of a Doubt, Daniel Kennefick provides definitive answers by offering the most comprehensive and authoritative account of how expedition scientists overcame war, bad weather, and equipment problems to make the experiment a triumphant success.

What compelled you to write this book?

The story of the 1919 eclipse is one of the most dramatic and significant in the history of science, and one that I’ve always found fascinating. What compelled me to research it closely was my puzzlement about the criticisms of Eddington which I heard repeated more and more, especially while working on volume 9 the Collected Papers of Albert Einstein, which covered Einstein’s life during the year 1919. I found the complaints about Eddington’s supposed bias in favor of Einstein unconvincing, especially the claim that Eddington’s pacifism was responsible for his desire to prove Einstein right. I thought that it was time someone looked closely at the actual data analysis decisions, using original documents preserved in the archives. I decided to write the book because I found the complete story of the eclipse which I put together to be fascinating and the centenary seemed like a perfect occasion to tell that story. I also felt that there was a danger that important work on the 1919 eclipse was being overlooked. As part of my research I learned that a re-analysis of the photographic plates taken in 1919 was conducted in 1978 by English astronomers at the Royal Greenwich Observatory using modern plate-measuring equipment and computers. They completely vindicated the work of the original team, and yet their re-analysis had gone totally unrecognized and unread. It was even misrepresented in the one book which did allude to it, Stephen Hawking’s A Brief History of Time. So I felt it was important to restore some balance to the story of what happened in 1919.

You say that the 1919 solar eclipse is perhaps one of the most important eclipses in history, but there are critics who contend that Arthur Eddington placed too much emphasis on the eclipse proving Einstein’s theory of relativity. Why do you think that’s a weak counter-argument?

The problem here is that the modern critics distort the story by their focus on just one participant, the famous astrophysicist Eddington. Incidentally, he was known to his family by his middle name Stanley; he never went by Arthur. Since Eddington was only involved in this one test of general relativity, it is easy to make it seem that there has been too much emphasis on the 1919 eclipse test. But Eddington himself never regarded confirmation of the theory as depending upon this one test. It’s just that modern commentary rarely talks about anything beyond Eddington’s role, which doesn’t even tell the complete story of this one test. There were two expeditions in 1919, and Eddington was only involved in one of them. The other one, organized by the Royal Observatory, Greenwich to Sobral in Brazil, obtained the most important data.

Having said all that, there is a sense in which the 1919 test was of very special importance. There were only three tests of Einstein’s new theory of gravity that were possible to do a century ago. One of these—the explanation of the perihelion shift of Mercury—was impressive, but since Einstein knew the result his theory had to “predict” it didn’t count as a prediction in the usual sense. The other test was the solar redshift measurements, but this confirms only the principle of equivalence and is not strictly speaking a test of general relativity as such. The prediction that light is deflected when it passes through the gravitational field of the Sun was a test of the complete theory that Einstein could not know the answer to beforehand. The 1919 expeditions were the first time that this observation had ever been successfully made. The agreement achieved was very dramatic and the fact that the experiment could not be repeated until the next suitable eclipse, in 1922, added even more drama to the occasion. So the truth is that the 1919 expedition was a special occasion in the history of science.

Can you talk a bit about the circumstances surrounding the Principe and Brazil expeditions that made this experiment so significant?

There were three circumstances that made this eclipse extraordinary. The first is that the eclipse took place on a day, May 29th, when the Sun is in the star field of the Hyades cluster. This is the closest star cluster to the Earth and there is no other place on the ecliptic (the Sun’s path through the sky) with so many bright stars so close together. Thus, an eclipse taking place on that day is perfectly suited to performing this experiment. Such an eclipse will next occur in 2310, so the expedition planners realized that it was especially important to try the experiment in 1919. Unfortunately, as late as November 1918, it looked unlikely that ships could be found to carry the teams to their preferred stations on the island of Principe and in northeastern Brazil. The reason for the suspension of shipping was World War I which fortunately ended abruptly later that same month. Had the war lasted any longer, it is unlikely that the expeditions could have departed. Even as it was a civil war broke out in Portugal, a key stop on their route, before their departure, and Eddington had no idea which ship would take him to Principe when he left England in March 1919.

This second circumstance, that of a war torn world, very nearly scuppered the planning for the expeditions, but undoubtedly helped make the team so famous when they returned successfully. The triumph of science over the tribulations of history really caught the public imagination. Certainly an aspect of this public response was that the expedition was mounted from England in order to test, and confirm, the theory of a German scientist, Albert Einstein, so it had an additional aura of reconciliation about it, at a time when postwar feelings were very bitter.

A third favorable circumstance was the relevant expertise of the expeditions’ personnel, especially the director of the Greenwich Observatory, Frank Watson Dyson. Einstein’s prediction was that the presence of the Sun near stars would cause tiny shifts in their positions, because the Sun’s gravity would deflect the starlight on its way to the Earth. Dyson and Eddington, but especially Dyson, were experts in this kind of differential astrometry, the measurement of small shifts in star positions. They had spent years (decades, in Dyson’s case) measuring the proper motion and the parallax of stars, which depends on the measurement of similar small star shifts. Thus by good fortune this special opportunity to test Einstein’s opportunity was undertaken by the ideal team who were able to overcome all obstacles, including bad weather and difficulties with instrumentation.

Will we ever see a solar eclipse quite like this in our lifetime?

No, we won’t. Obviously an eclipse with this special star field won’t occur again for nearly two centuries. But in addition, the advance of technology means that there are few important scientific tasks which require an eclipse. Radio telescopes do not require a solar eclipse to test Einstein’s light deflection prediction. These instruments can do the test far more accurately than can be done with optical telescopes at an eclipse. But in another sense, replicating the drama of 1919 is open to anyone. Experiments at the recent 2017 eclipse have shown that a modern amateur astronomer can do the experiment alone to an accuracy better than what was achievable in 1919. Another total solar eclipse will cross America in 2024 and we can hope that other enthusiasts will study the eclipse then. If enough people do the experiment and are able to pool their data, they could achieve a result far more accurate than any ever achieved by professional astronomers at an eclipse. We are living at a moment in history in which the means to do this experiment are within the reach of many people.

What do you hope that readers will take away from this book?

What first made me skeptical of Eddington’s modern critics was their claim that the expedition’s work was influenced by Eddington’s bias in favor of General Relativity as well as his militant pacifism. I found these arguments unpersuasive because I knew that Eddington’s views were highly unusual. Other astronomers of the period were highly skeptical of, or even hostile towards, general relativity. War resisters like Eddington (and Einstein) were a despised minority during World War I. It didn’t make sense that this man could have single-handedly persuaded everyone involved to share his peculiar biases. Sure enough, careful reading of the documents in the archives, including letters and data analysis notes, made it clear that the decisions which were being criticized today weren’t even taken by Eddington but by others in the expedition, especially Dyson. Both Eddington and Dyson made it clear in their letters that Dyson was skeptical of Einstein’s theory to begin with. As I puzzled through Dyson’s notes, I began to unravel the reasoning behind his decision, and I found that it made a lot more sense than did the arguments of some of the modern critics. Furthermore, his reasoning is completely vindicated by the results of the 1978 re-analysis. But I also came to realize that Dyson’s decision depended heavily on input from his assistant, Charles Davidson, and that the success of the expedition was made possible by the multinational Astrographic project, which Dyson worked on and which two of the telescope lenses they used were constructed for. I realized I needed to learn about the man who made those lenses, a fellow Irishman called Howard Grubb, and about the institutional framework which was used to organize the expeditions at a very difficult time. The minutes of the meetings of that Joint Permanent Eclipse Committee and the letters written home to his mother and sister by Eddington made the expeditions come alive for me, and I wanted to share that with other readers. I hope they come away, as I did, with a conviction that the history of science cannot be told fully without understanding the role of all the scientists involved, rather than just one or two famous names. Part of the charm of the story is the different characters who contributed to doing something extraordinarily challenging under impossibly difficult circumstances.

Daniel Kennefick is associate professor of physics at the University of Arkansas, Fayetteville. He is the author of Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves and a coauthor of An Einstein Encyclopedia (both Princeton).

Adrienne Mayor on Inspiring Women Writers

Adrienne Mayor is the author of  Gods and Robots, the fascinating untold story of how the ancients imagined robots and other forms of artificial life—and even invented real automated machines. In honor of Women’s History Month, we asked her to share some of the women writers who inspired her work on this book—and those who have captivated her since childhood.

Thinking about women whose writings have inspired me since childhood is a happy assignment. There are far too many to list, but here are seven. As a young bookworm in South Dakota, I haunted the public library and eagerly anticipated the Bookmobile’s weekly visit. I was reading the “Little House on the Prairie” books while my new elementary school, named after Laura Ingalls Wilder herself, was being built in the cornfield across the street from my house.

Captivated by the adventures of self-sufficient, independent kids free to roam without any grownups around, I loved the Moffat and Pye families created by Eleanor Estes (1906-1988). Based on her own childhood in the early 1900s and told with dry humor, Estes’ plots were filled with serious, real-life details. The kids gathered coal lumps on train tracks to keep warm in winter, investigated mysterious events, and recovered a kidnapped puppy—I was not a big fan of magic or fantasy.

Estes, a children’s librarian, wrote award-winning Children’s Literature. But I was spending my allowance on another sort of literature. Namely, comic books by the pioneering female cartoonist Marjorie Henderson Buell, the creator of Little Lulu. That smart, daring, sassy, audacious little girl who made her own rules was my first feminist hero.

My other favorites were The Phoenix and the Carpet and Five Children and It by E. Nesbit (1858-1924). A British socialist, Nesbit took up writing children’s books to support herself. Like Estes, E(dith) Nesbit had lost her father at an early age and was raised by a mother who struggled to make ends meet. Her stories were set in Edwardian England and the children were usually home alone, free to roam the countryside and London, not mention fabulous excursions to ancient Egypt and Babylon. Now, E. Nesbit’s plots did involve magic but in such a pragmatic fashion that the magic often became a nuisance and bother, compelling the five young siblings to be resourceful and inventive to survive the fantastic situations they found themselves in. As Gore Vidal noted in his review of Nesbit’s works (NY Review of Books), her boys and girls are intelligent, sarcastic, cruel, compassionate, selfish, cooperative, arrogant, funny, impulsive, rude, thoughtful–like adults but also like real children. Eleanor Estes, Marjorie Buell, and E. Nesbit were all unsentimental distillers of “the essence of childhood,” and their books are good to read at any age.

I Married Adventure, the autobiography of Osa Johnson, was another beloved book of my youth. Osa left Kansas to become an adventurer and documentary film pioneer who explored faraway Africa, the South Pacific, and Borneo in 1917-37. She and her husband each flew their own amphibious biplanes; they lived in tents and encountered exotic wild animals–with their primitive Eastman-Kodak movie cameras whirring all the while. I read Osa’s memoirs countless times, day-dreaming over the sepia photos, imagining where I might travel one day.

One scientist who inspired my own research and writing was Dorothy Vitaliano. A geologist, she invented the discipline of “geomythology.” In her path-breaking book Legends of the Earth: Their Geologic Origins (1973), Vitaliano proposed that scientific details of catastrophic natural disasters such as earthquakes, volcanoes, and floods were preserved in folklore, myths, and legends around the world.

While working on Gods and Robots: Myths, Machines, and Ancient Dreams of Technology, I developed renewed admiration for Mary Shelley’s Frankenstein (1818) written when she was nineteen. I hadn’t realized how strongly Shelley’s story was shaped by her knowledge of philosophy, science, and classical mythology about Prometheus, who fabricated the first humans and gave them fire. Shelley portrayed Victor Frankenstein the “modern Prometheus” for her era. I’m in awe of her ability to weave Immanuel Kant and alchemy, occult transference of souls, and advances in chemistry, electricity, and human physiology so marvelously into a timeless and gripping science fiction tale—at such a young age.

—Adrienne Mayor

 

 

William R. Newman on Newton the Alchemist

When Isaac Newton’s alchemical papers surfaced at a Sotheby’s auction in 1936, the quantity and seeming incoherence of the manuscripts were shocking. No longer the exemplar of Enlightenment rationality, the legendary physicist suddenly became “the last of the magicians.” Newton the Alchemist unlocks the secrets of Newton’s alchemical quest, providing a radically new understanding of the uncommon genius who probed nature at its deepest levels in pursuit of empirical knowledge.

People often say that Isaac Newton was not only a great physicist, but also an alchemist. This seems astonishing, given his huge role in the development of science. Is it true, and if so, what is the evidence for it?

The astonishment that Newton was an alchemist stems mostly from the derisive opinion that many moderns hold of alchemy. How could the man who discovered the law of universal gravitation, who co-invented calculus, and who was the first to realize the compound nature of white light also engage in the seeming pseudo-science of alchemy? There are many ways to answer this question, but the first thing is to consider the evidence of Newton’s alchemical undertaking. We now know that at least a million words in Newton’s hand survive in which he addresses alchemical themes. Much of this material has been edited in the last decade, and is available on the Chymistry of Isaac Newton site at www.chymistry.org. Newton wrote synopses of alchemical texts, analyzed their content in the form of reading notes and commentaries, composed florilegia or anthologies made up of snippets from his sources, kept experimental laboratory notebooks that recorded his alchemical research over a period of decades, and even put together a succession of concordances called the Index chemicus in which he compared the sayings of different authors to one another. The extent of his dedication to alchemy was almost unprecedented. Newton was not just an alchemist, he was an alchemist’s alchemist.  

What did Newton hope to gain by studying alchemy? Did he actually believe in the philosophers’ stone, and if so, why? And what was the philosophers’ stone exactly?

Newton’s involvement in alchemy was polyvalent, as befits a pursuit that engaged him intensively for more than three decades and which traditionally included multiple goals. The term “alchemy” in the early modern period was largely coextensive with “chymistry,” a field that included distilling, pigment-making, salt-refining, and the manufacture of drugs alongside the perennial attempt to transmute metals. Beyond an interest in all these technical pursuits, Newton employed alchemical themes in his physics, particularly in the area of optics. Newton’s theory that white light is a mixture of unaltered spectral colors was bolstered by techniques of material analysis and synthesis that had a long prehistory in the domain of alchemy. But at the same time, he hoped to attain the grand secret that would make it possible to perform radical changes in matter. The philosophers’ stone as described by alchemical authors was a material that could transmute base metals into gold and silver and “perfect” certain other materials as well. At the same time, many authors believed that the philosophers’ stone could cure human ailments and extend life to the maximum limit that God would allow. Some of Newton’s sources even claim that the philosophers’ stone would allow its possessors to contact angels and to communicate telephatically with one another. Did Newton believe all of this? Suffice it to say that nowhere in his voluminous notes does he dispute these assertions, even while recounting them. Although he may have been exercising a suspension of disbelief in the case of the more extravagant claims for the philosophers’ stone, his long involvement in the aurific art implies that he must at least have thought the alchemists were on to something when they discussed transmutation.      

Did Newton also believe, as many contemporary alchemists did, that the totality of Greek and Roman mythology was just encoded alchemy?

It’s certainly true that Newton’s favorite sources thought Greek and Roman mythology to contain valuable alchemical secrets. Ovid’s Metamorphoses was a particularly popular target of interpretation, since the whole book deals with radical transformations of one thing into another. Newton himself decoded the story of Cadmus and the founding of Thebes, one of Ovid’s myths, into practical laboratory instructions in one of his notebooks. In Newton’s early reading, Cadmus becomes the iron required to reduce the metalloid antimony from its ore stibnite, and the dragon who attacks Cadmus is the stibnite itself. But does this mean that Newton believed the originators of the myth to have meant it as a veiled alchemical recipe? If so, this would run contrary to Newton’s extensive interpretations of ancient mythology and religion that occur alongside his studies of biblical chronology. In these texts, which occupy about four million words and are thus even more extensive than his alchemical writings, Newton argues that the famous figures of ancient mythology were actual people whose lives were later embellished by mythologizing writers. It is likely, then, that Newton’s alchemical decoding of mythology is actually an attempt to interpret early modern writers who used ancient myth as a way of wrapping their processes in enigma rather than signifying that he himself believed Ovid, for example, to have been an alchemist.    

What did Newton make of the bizarre language that alchemists traditionally used for their secrets, including terms like “the Babylonian Dragon,” “the Caduceus of Mercury,” and “the Green Lion”?

Newton spent decades trying to decipher the enigmatic terminology of the alchemists. In reality, exotic Decknamen (cover-names) were only part of an extensive and well-developed set of tools that alchemists had long employed for the purpose of revealing and concealing their knowledge. Other techniques included syncope (leaving out steps and materials), parathesis (adding in unnecessary terms and processes), and dispersion of knowledge, which consisted of dividing up processes and distributing them over different parts of a text or even putting the parts in entirely different texts.   The bulk of Newton’s reading notes consist of his attempts to arrive at the correct meaning of terms, and he was aware of the fact that the same term often meant different things to different authors. His Index chemicus, for example, lists multiple different meanings for the term “Green Lion,” which Newton links to specific writers. In a word, Newton’s alchemy is as much about the literary decipherment of riddles as it is about putting his interpretation to the test in the laboratory.

Did Newton consider himself to be an “adept,” that is, one of the masters of alchemy who had acquired the great secret of the art?

Although Newton occasionally records eureka moments in his laboratory notebooks such as “I saw the sophic sal ammoniac” or “I have understood the luciferous Venus,” he never records that he found the philosophers’ stone or performed an actual transmutation. He seems to have viewed himself as being on the way to finding the philosophers’ stone, but not to have ever thought that he had attained it. Nonetheless, his rapport with the adepts is clear. Several of his manuscripts record instances where he copied the early modern alchemical practice of encoding one’s name in a phrase that could be interpreted as an anagram. Michael Sendivogius, for example, a celebrated Polish adept, became “Divi Leschi Genus Amo” (“I love the race of the divine Lech”). The most famous of these anagrams in Newton’s case is “Jeova sanctus unus,” which can be rearranged to yield “Isaacus Neuutonus,” Latin for Isaac Newton. This is not the only such anagram in his alchemical papers. One manuscript in fact contains over thirty different phrases in which Newton concealed his name. Along with other clues in his papers, this suggests strongly that Newton believed himself to belong rightly to the band of the adepts, even if he was only an aspirant to their ranks.        

How does your book Newton the Alchemist change what we already knew about Newton’s alchemical quest?

Thanks to scholarly work done in the last third of the twentieth century, there is currently a widespread “master narrative” of Newton’s alchemy, though one with which I disagree. The major scholars of the subject at that time argued that alchemy for Newton was above all a religious quest, and that its impact on his more mainstream science lay in his emphasis on invisible forces that could act at a distance, such as gravitational attraction. Contemporary sources ranging from popular outlets such as Wikipedia to serious scholarly monographs echo these themes. In reality, however, there is little to no evidence to support either view.  Although there was a constant bleed-through from his alchemical research to his public science, Newton pursued the philosophers’ stone neither for the sake of God nor for the sake of physics. Instead, he practiced alchemy as an alchemist. In a word, the celebrated scientist aimed his bolt at the marvelous menstrua and volatile spirits of the sages, the instruments required for making the philosophers’ stone. Difficult as it may be for moderns to accept that the most influential physicist before Einstein dreamed of becoming an alchemical adept, the gargantuan labor that Newton devoted to experimental chrysopoeia speaks for itself.

A common view of Newton’s alchemy is that he kept it a secret from the world. Is this true, and if so, why was he so secretive? Did he think that alchemy was somehow dangerous? Or was it disreputable?

Newton generally kept quiet about his alchemical research, though he did engage in collaborations with select individuals such as his friend Nicolas Fatio de Duillier, and later, the Dutch distiller William Yworth. The main reason for his caution lay in his concern that alchemy might lay claim to secrets that could be dangerous if revealed to the world at large. The social order would be turned topsy-turvy if gold and silver lost their value as a result of the philosophers’ stone falling into the hands of the hoi polloi, and other disastrous consequences might result as well. Newton’s anxiety emerges quite clearly from a letter that he sent to the Secretary of the Royal Society, Henry Oldenburg, in 1676. The occasion was a publication by another alchemical researcher, Robert Boyle, who had recently published a paper on a special “sophic” mercury that would grow hot if mixed with gold. Newton was alarmed at Boyle’s candor, and suggested to Oldenburg that the author of The Sceptical Chymist should in the future revert to a “high silence” in order to avoid revealing secrets that the “true Hermetick Philosopher” must keep hidden lest they cause “immense dammage to ye world.”

You argue in your book that it’s not enough to read about Newton’s alchemical experiments, but that historians actually need to do them in a laboratory. Tell us what you have found by repeating Newton’s experiments and why this is important.

Anyone who tries to wade through Newton’s laboratory notebooks will be struck at once by the multitude of obscure expressions that he employs for materials. Although terms such as “the Green Lion,” “sophic sal ammoniac,” and “liquor of antimony” already existed in the literature of alchemy, they meant different things to different authors. In order to determine what their precise meaning was to Newton, one must look carefully at the properties that he ascribes to each material and to the protocols that he applies when he uses it in the laboratory. A good example may be found in the case of liquor of antimony, which Newton also refers to as vinegar, spirit, and salt of antimony. Extensive examination of these terms in his notebooks shows that they were interchangeable for Newton, and that they referred to a solution of crude antimony (mostly antimony sulfide) in a special aqua regia. Having made this material in the laboratory, I was then able to use it to make other Newtonian products, such a “vitriol of Venus,” a crystalline copper compound produced from the dried solution of copper or a copper ore in liquor of vitriol. This product is volatile at relatively low temperatures and can be used to volatilize other metals, which helps explain why Newton thought he was on the path to alchemical success. He hoped to liberate the internal principle of metallic activity by subtilizing the heavy metals and freeing them from what he saw as their gross accretions.      

Was alchemy considered a deviant or “occult” practice in Newton’s day? Did doing alchemy make Newton a sorceror or witch?  

It is a popular modern misconception that alchemy, astrology, and magic were all part and parcel of the same “occult” enterprise. To most medieval and early modern thinkers, these were distinct areas of practice, despite the currently reigning stereotypes. Newton had little or no interest in astrology, which did not distinguish him from most European alchemists. If by “magic” one means sorcery or witchcraft, this too was an area quite distinct from alchemy, and entirely alien to Newton’s interests. There was an overlap with alchemy in the domain of “natural magic,” however, and Newton evinced a marked interest in this field in his adolescence. One of the things that I have been able to show is that his earliest interest in alchemy, as revealed by his copying and reworking of an anonymous Treatise of Chymistry in the 1660s, may have grown out of his youthful fascination with works on natural magic and “books of secrets.” But natural magic was considered a legitimate field of endeavor by most experimental scientists in the seventeenth century, not a transgressive or deviant activity.

William R. Newman is Distinguished Professor and Ruth N. Halls Professor in the Department of History and Philosophy of Science and Medicine at Indiana University. His many books include Atoms and Alchemy: Chymistry and the Experimental Origins of the Scientific Revolution and Promethean Ambitions: Alchemy and the Quest to Perfect Nature. He lives in Bloomington, Indiana.

William R. Newman: Newton the Scientist or Newton the Alchemist?

Isaac Newton was an alchemist. Isaac Newton was perhaps the greatest scientist who ever lived. How do we reconcile these two statements? After all, to most modern people, alchemy was at best a delusion and at worst an outright fraud. But Newton’s involvement in chrysopoeia, the alchemical attempt to transmute metals, is undeniable. Thanks to a famous 1936 auction of Newton’s papers, it is now an indisputable fact that the famous physicist wrote extensively on alchemy. Careful estimates indicate that he left about a million words on the subject, or possibly somewhat more.  Nor can one assert that this material stemmed from Newton’s old age, when he had ceased to be a productive scientist. To the contrary, his involvement in alchemy occupied the most productive period of his life, beginning in the 1660’s, when Newton’s innovations in mathematics and physics were still in their formative stages, and continuing up to the early eighteenth century when he published his famous Opticks.

What then are we to make of Newton’s alchemical quest, which extended over more than three decades? In the last third of the twentieth century, when the academic field of the history of science still held alchemy in low esteem, scholars were perplexed at his devotion to the aurific art. Two complementary theories emerged that attempted to explain Newton’s involvement in alchemy. The first built on the modern idea that alchemy was a type of magic, and that Renaissance magic focused on the hidden sympathies and antipathies between material things. The reason why a lodestone attracted iron at a distance was because of a hidden sympathy between the two.   Couldn’t this sort of explanation have stimulated Newton to think of gravity in terms of an immaterial attraction? And wasn’t alchemy based on the idea that some materials react with others because of a similar principle of affinity? Thus the idea that Newton’s involvement with alchemy was part of a quest to understand gravitational attraction was born. But closer inspection shows that this historical explanation has little or no justification. When Newton actually does speak about gravity and alchemy in the same breath, as in his manuscript Of Natures obvious laws & processes in vegetation, he explicitly proposes a mechanical explanation of gravity that does not involve immaterial attraction. There is no evidence that his concept of action at a distance emerged from his alchemical studies.

The second major attempt to explain Newton’s alchemy in the last generation stemmed from a consideration of two fields: religion and analytical psychology. The pioneering psychologist Carl Jung had been arguing since the early twentieth century that alchemy was really a matter of “psychic processes expressed in pseudochemical language.” Moreover, Jung argued that the language of alchemy was remarkably similar to that of Gnosticism, a heterodox religious movement of the early Christian centuries that stressed the need for personal revelation (gnosis) and communication with God. The 1936 auction that revealed Newton’s alchemy to the world had also released millions of words in his hand that dealt with prophecy, biblical chronology, and the iniquity of the orthodox doctrine of the Trinity. Newton was now understood to be a passionate Antitrinitarian and a deeply religious thinker.

Wasn’t it possible, then, that his alchemy was merely an outgrowth of his religion, and that he saw the philosophers’ stone in its role of perfecting metals as a material surrogate for Jesus, the savior of souls? After all, alchemists had long justified their art as a divine pursuit, which God would only allow to fall into the hands of the worthy. Like the argument about alchemy and gravitational attraction, however, the claim that Newton’s interest in alchemy sprang from his religiosity falls on hard times when one examines the evidence. In reality, Newton never develops the religiously tinted themes that his alchemical sources sometimes convey. When they speak of the Holy Trinity, for example, Newton ignores the obvious religious sense and immediately tries to decode the reference into the form of an alchemical recipe. And if one turns to the roughly four million words that he wrote on religious topics, the references to alchemy are vanishingly small. For Newton, alchemy and religion were independent domains, each to be treated separately.  

Why then did Newton believe in the aurific art, and what was the empirical basis of his generation-long alchemical quest? By examining the evidence upon which early modern alchemists based their beliefs, one can better appreciate Newton’s goals. In their world, minerals and metals came into being and then died beneath the surface of the earth, forming gigantic trees whose branches presented themselves as veins and stringers of ore. This idea seems less naïve when one considers mineral entities such as wire silver, which really does seem to mimic organic life.

In this world, nature seemed to delight in transmutations, as Newton himself would say in the final editions of his famous Opticks. A famous example lay in the blue mineral vitriol found in mines, which could rapidly “transmute” iron into copper by plating it. The continual sinking down and rising up of living, fertile, mineral fumes led Newton to his own early theory of subterranean generation and corruption. Basing himself on the old alchemical principle that art should mimic nature, Newton spent decades attempting to arrive at ever more volatile metal compounds, which he hoped would act as destructive agencies that could break metals into their primitive components and thereby release their hidden life. In my ongoing attempt to understand Newton’s goals and methods, I have replicated a number of his experiments in the Indiana University Chemistry Department. The results, even if they have not revealed the secret of the philosophers’ stone, can certainly help us to understand why Newton persisted in his quest for the philosophers’ stone over the greater part of his scientific career.

William R. Newman is Distinguished Professor and Ruth N. Halls Professor in the Department of History and Philosophy of Science and Medicine at Indiana University. His many books include Atoms and Alchemy: Chymistry and the Experimental Origins of the Scientific Revolution and Promethean Ambitions: Alchemy and the Quest to Perfect Nature. He lives in Bloomington, Indiana.

Browse our 2018 History of Science & History of Knowledge Catalog

We are pleased to announce our new History of Science & History of Knowledge catalog for 2018! Among the exciting new titles are an annotated edition of Albert Einstein’s travel diaries, a new look at the history of heredity, eugenics, and the asylum, and the latest volume of The Collected Papers of Albert Einstein.

 

The Travel Diaries of Albert Einstein makes available the complete journal that Einstein kept on his momentous 1922 journey to the Far East and Middle East.

The telegraphic-style diary entries—quirky, succinct, and at times irreverent—record Einstein’s musings on science, philosophy, art, and politics, as well as his immediate impressions and broader thoughts on particular events and encounters. Entries also contain passages that reveal Einstein’s stereotyping of members of various nations and raise questions about his attitudes on race. This beautiful edition features stunning facsimiles of the diary’s pages, accompanied by an English translation, an extensive historical introduction, numerous illustrations, and annotations.

This volume offers an initial, intimate glimpse into a brilliant mind encountering the great, wide world.

In the early 1800s, a century before there was any concept of the gene, physicians in insane asylums began to record causes of madness in their admission books. Almost from the beginning, they pointed to heredity as the most important of these causes. Genetics in the Madhouse is the untold story of how the collection and sorting of hereditary data in mental hospitals, schools for “feebleminded” children, and prisons gave rise to a new science of human heredity.

In this compelling book, Theodore Porter draws on untapped archival evidence from across Europe and North America to bring to light the hidden history behind modern genetics. Porter argues that asylum doctors developed many of the ideologies and methods of what would come to be known as eugenics, and deepens our appreciation of the moral issues at stake in data work conducted on the border of subjectivity and science.

A bold rethinking of the asylum, Genetics in the Madhouse shows how heredity was a human science as well as a medical and biological one.

Volume 15 of The Collected Papers of Albert Einstein covers one of the most thrilling two-year periods in twentieth-century physics. The almost one hundred writings by Einstein, of which a third have never been published, and the more than thirteen hundred letters show Einstein’s immense productivity and hectic pace of life.

Between June 1925 and May 1927, Einstein quickly grasps the conceptual peculiarities involved in the new quantum mechanics and investigates the problem of motion in general relativity, hoping for a hint at a new avenue to unified field theory. He also falls victim to scientific fraud and experiences rekindled love for an old sweetheart. He participates in the League of Nations’ International Committee on Intellectual Cooperation and remains intensely committed to the shaping of the Hebrew University in Jerusalem, although his enthusiasm for this cause is sorely tested.

THE COLLECTED PAPERS OF ALBERT EINSTEIN is one of the most ambitious publishing ventures ever undertaken in the documentation of the history of science.  Selected from among more than 40,000 documents contained in the personal collection of Albert Einstein (1879-1955), and 20,000 Einstein and Einstein-related documents discovered by the editors since the beginning of the Einstein Papers Project, The Collected Papers provides the first complete picture of a massive written legacy that ranges from Einstein’s first work on the special and general theories of relativity and the origins of quantum theory, to expressions of his profound concern with international cooperation and reconciliation, civil liberties, education, Zionism, pacifism, and disarmament. The open access digital edition of the first 14 volumes of the Collected Papers is available online at einsteinpapers.press.princeton.edu.

Introducing Volume 15 of The Collected Papers of Albert Einstein

From fraudulent science to hope for European reunification, the newest volume of The Collected Papers of Albert Einstein conveys the breakneck speed of Einstein’s personal and professional life. Volume 15, covering June 1925 to May 1927, is out now!

THE COLLECTED PAPERS OF ALBERT EINSTEIN
Volume 15: The Berlin Years
Writings & Correspondence, June 1925-May 1927, Documentary Edition

Edited by Diana Kormos Buchwald, József Illy, A. J. Kox, Dennis Lehmkuhl, Ze’ev Rosenkranz & Jennifer Nollar James

Princeton University Press, the Einstein Papers Project at the California Institute of Technology, and the Albert Einstein Archives at the Hebrew University of Jerusalem, are pleased to announce the latest volume in the authoritative COLLECTED PAPERS OF ALBERT EINSTEIN. This volume covers one of the most thrilling two-year periods in twentieth-century physics, as matrix mechanics—developed chiefly by W. Heisenberg, M. Born, and P. Jordan—and wave mechanics—developed by E. Schrödinger—supplanted earlier quantum theory. The almost one hundred writings, a third of which have never before been published, and the more than thirteen hundred letters demonstrate Einstein’s immense productivity at a tumultuous time.

Within this volume, Einstein grasps the conceptual peculiarities involved in the new quantum mechanics; falls victim to scientific fraud while in collaboration with E. Rupp; and continues his participation in the League of Nations’ International Committee on Intellectual Cooperation.

ENGLISH TRANSLATION SUPPLEMENT

Every document in The Collected Papers of Albert Einstein appears in the language in which it was written, and this supplementary paperback volume presents the English translations of select portions of non-English materials in Volume 15. This translation does not include notes or annotation of the documentary volume and is not intended for use without the original language documentary edition which provides the extensive editorial commentary necessary for a full historical and scientific understanding of the documents.

Translated by Jennifer Nollar James, Ann M. Hentschel, and Mary Jane Teague, Andreas Aebi and Klaus Hentschel, consultants

THE COLLECTED PAPERS OF ALBERT EINSTEIN

Diana Kormos Buchwald, General Editor

THE COLLECTED PAPERS OF ALBERT EINSTEIN is one of the most ambitious publishing ventures ever undertaken in the documentation of the history of science.  Selected from among more than 40,000 documents contained in the personal collection of Albert Einstein (1879-1955), and 20,000 Einstein and Einstein-related documents discovered by the editors since the beginning of the Einstein Papers Project, The Collected Papers provides the first complete picture of a massive written legacy that ranges from Einstein’s first work on the special and general theories of relativity and the origins of quantum theory, to expressions of his profound concern with international cooperation and reconciliation, civil liberties, education, Zionism, pacifism, and disarmament.  The series will contain over 14,000 documents as full text and will fill close to thirty volumes.  Sponsored by the Hebrew University of Jerusalem and Princeton University Press, the project is located at and supported by the California Institute of Technology and has made available a monumental collection of primary material. It will continue to do so over the life of the project. The Albert Einstein Archives is located at the Hebrew University of Jerusalem. The open access digital edition of the first 14 volumes of the Collected Papers is available online at einsteinpapers.press.princeton.edu.

ABOUT THE SERIES: Fifteen volumes covering Einstein’s life and work up to his forty-eighth birthday have so far been published. They present more than 500 writings and 7,000 letters written by and to Einstein. Every document in The Collected Papers appears in the language in which it was written, while the introduction, headnotes, footnotes, and other scholarly apparatus are in English.  Upon release of each volume, Princeton University Press also publishes an English translation of previously untranslated non-English documents.

ABOUT THE EDITORS: At the California Institute of Technology, Diana Kormos Buchwald is professor of history; A. J. Kox is senior editor and visiting associate in history; József Illy and Ze’ev Rosenkranz are editors and senior researchers in history; Dennis Lehmkuhl is research assistant professor and scientific editor; and Jennifer Nollar James is assistant editor.

Celebrate Pi Day with Books about Einstein

Pi Day is coming up! Mathematicians around the world celebrate on March 14th because the date represents the first three digits of π: 3.14.

In Princeton, Pi Day is a huge event even for the non-mathematicians among us, given that March 14 is also Albert Einstein’s birthday. Einstein was born on March 14, 1879, in Ulm, in the German Empire. He turns 139 this year! If you’re in the Princeton area and want to celebrate, check out some of the festivities happening around town:

Saturday, 3/10/18

  • Apple Pie Eating Contest, 9:00 a.m., McCaffrey’s (301 North Harrison Street). Arrive by 8:45 a.m. to participate.
  • Einstein in Princeton Guided Walking Tour, 10:00 a.m. Call Princeton Tour Company at (855) 743-1415 for details.
  • Einstein Look-A-Like Contest, 12:00 p.m., Nassau Inn. Arrive early to get a spot to watch this standing-room-only event!
  • Pi Recitation Contest, 1:30 p.m., Prince William Ballroom, Nassau Inn. Children ages 12 and younger may compete. Register by 1:15 p.m.
  • Pie Throwing Event, 3:14 p.m., Palmer Square. Proceeds to benefit the Princeton Educational Fund Teacher Mini-Grant Program.
  • Cupcake Decorating Competition, 4:00 p.m., House of Cupcakes (34 Witherspoon Street). The winner receives one free cupcake each month for the rest of the year.

Wednesday, 3/14/18

  • Princeton School Gardens Cooperative Fundraiser, 12:00 p.m. to 6:00 p.m., The Bent Spoon (35 Palmer Square West) and Lillipies (301 North Harrison Street). All proceeds from your afternoon treat will be donated to the Princeton School Gardens Cooperative.
  • Pi Day Pop Up Wedding/Vow Renewal Ceremonies, 3:14 p.m. to 6:00 p.m., Princeton Pi (84 Nassau Street). You must pre-register by contacting the Princeton Tour Company.

Not into crowds, or pie? You can also celebrate this multifaceted holiday by picking up one of PUP’s many books about Albert Einstein! In 1922, Princeton University Press published Einstein’s The Meaning of Relativity, his first book produced by an American publisher. Since then, we’ve published numerous works by and about Einstein.

The books and collections highlighted here celebrate not only his scientific accomplishments but also his personal reflections and his impact on present-day scholarship and technology. Check them out and learn about Einstein’s interpersonal relationships, his musings on travel, his theories of time, and his legacy for the 21st century.

Volume 15 of the Collected Papers of Albert Einstein, forthcoming in April 2018, covers one of the most thrilling two-year periods in twentieth-century physics, as matrix mechanics—developed chiefly by W. Heisenberg, M. Born, and P. Jordan—and wave mechanics—developed by E. Schrödinger—supplanted the earlier quantum theory. The almost one hundred writings by Einstein, of which a third have never been published, and the more than thirteen hundred letters show Einstein’s immense productivity and hectic pace of life.

Einstein quickly grasps the conceptual peculiarities involved in the new quantum mechanics, such as the difference between Schrödinger’s wave function and a field defined in spacetime, or the emerging statistical interpretation of both matrix and wave mechanics. Inspired by correspondence with G. Y. Rainich, he investigates with Jakob Grommer the problem of motion in general relativity, hoping for a hint at a new avenue to unified field theory.

Readers can access Volumes 1-14 of the Collected Papers of Albert Einstein online at The Digital Einstein Papers, an exciting new free, open-access website that brings the writings of the twentieth century’s most influential scientist to a wider audience than ever before. This unique, authoritative resource provides full public access to the complete transcribed, annotated, and translated contents of each print volume of the Collected Papers. The volumes are published by Princeton University Press, sponsored by the Hebrew University of Jerusalem, and supported by the California Institute of Technology. Volumes 1-14 of The Collected Papers cover the first forty-six years of Einstein’s life, up to and including the years immediately before the final formulation of new quantum mechanics. The contents of each new volume will be added to the website approximately eighteen months after print publication. Eventually, the website will provide access to all of Einstein’s writings and correspondence accompanied by scholarly annotation and apparatus, which are expected to fill thirty volumes.

The Travel Diaries of Albert Einstein is the first publication of Albert Einstein’s 1922 travel diary to the Far East and Middle East, regions that the renowned physicist had never visited before. Einstein’s lengthy itinerary consisted of stops in Hong Kong and Singapore, two brief stays in China, a six-week whirlwind lecture tour of Japan, a twelve-day tour of Palestine, and a three-week visit to Spain. This handsome edition makes available, for the first time, the complete journal that Einstein kept on this momentous journey.

The telegraphic-style diary entries—quirky, succinct, and at times irreverent—record Einstein’s musings on science, philosophy, art, and politics, as well as his immediate impressions and broader thoughts on such events as his inaugural lecture at the future site of the Hebrew University in Jerusalem, a garden party hosted by the Japanese Empress, an audience with the King of Spain, and meetings with other prominent colleagues and statesmen. Entries also contain passages that reveal Einstein’s stereotyping of members of various nations and raise questions about his attitudes on race. This beautiful edition features stunning facsimiles of the diary’s pages, accompanied by an English translation, an extensive historical introduction, numerous illustrations, and annotations. Supplementary materials include letters, postcards, speeches, and articles, a map of the voyage, a chronology, a bibliography, and an index.

Einstein would go on to keep a journal for all succeeding trips abroad, and this first volume of his travel diaries offers an initial, intimate glimpse into a brilliant mind encountering the great, wide world. 

More than fifty years after his death, Albert Einstein’s vital engagement with the world continues to inspire others, spurring conversations, projects, and research, in the sciences as well as the humanities. Einstein for the 21st Century shows us why he remains a figure of fascination.

In this wide-ranging collection, eminent artists, historians, scientists, and social scientists describe Einstein’s influence on their work, and consider his relevance for the future. Scientists discuss how Einstein’s vision continues to motivate them, whether in their quest for a fundamental description of nature or in their investigations in chaos theory; art scholars and artists explore his ties to modern aesthetics; a music historian probes Einstein’s musical tastes and relates them to his outlook in science; historians explore the interconnections between Einstein’s politics, physics, and philosophy; and other contributors examine his impact on the innovations of our time. Uniquely cross-disciplinary, Einstein for the 21st Century serves as a testament to his legacy and speaks to everyone with an interest in his work. 

The contributors are Leon Botstein, Lorraine Daston, E. L. Doctorow, Yehuda Elkana, Yaron Ezrahi, Michael L. Friedman, Jürg Fröhlich, Peter L. Galison, David Gross, Hanoch Gutfreund, Linda D. Henderson, Dudley Herschbach, Gerald Holton, Caroline Jones, Susan Neiman, Lisa Randall, Jürgen Renn, Matthew Ritchie, Silvan S. Schweber, and A. Douglas Stone.

On April 6, 1922, in Paris, Albert Einstein and Henri Bergson publicly debated the nature of time. Einstein considered Bergson’s theory of time to be a soft, psychological notion, irreconcilable with the quantitative realities of physics. Bergson, who gained fame as a philosopher by arguing that time should not be understood exclusively through the lens of science, criticized Einstein’s theory of time for being a metaphysics grafted on to science, one that ignored the intuitive aspects of time. Jimena Canales tells the remarkable story of how this explosive debate transformed our understanding of time and drove a rift between science and the humanities that persists today.

The Physicist and the Philosopher is a magisterial and revealing account that shows how scientific truth was placed on trial in a divided century marked by a new sense of time.

 

After completing the final version of his general theory of relativity in November 1915, Albert Einstein wrote a book about relativity for a popular audience. His intention was “to give an exact insight into the theory of relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics.” The book remains one of the most lucid explanations of the special and general theories ever written.

This new edition features an authoritative English translation of the text along with an introduction and a reading companion by Hanoch Gutfreund and Jürgen Renn that examines the evolution of Einstein’s thinking and casts his ideas in a broader present-day context.

Published on the hundredth anniversary of general relativity, this handsome edition of Einstein’s famous book places the work in historical and intellectual context while providing invaluable insight into one of the greatest scientific minds of all time.

 

Steven and Ben Nadler: Happy Father’s Day

by Ben Nadler

Nadler

It’s now been two years since I began a collaboration with my dad, a philosophy professor, on a graphic book. He was wanting to do a philosophy book that would reach a wide readership, especially high school and college students, and I was fresh out of art school and looking for something big to do. When he suggested we do a project together, I didn’t hesitate at all. With his knowledge of seventeenth-century philosophy and my training in illustration, we could do something really original and exciting. Although he was in Madison, Wisconsin, and I was living in Seattle, we were able to work through hundreds of emails and phone calls. He would send me the text for the book, and I’d give him some comments and suggestions on what seemed to work and what didn’t. Then I would send him my pencil sketches and he would give me feedback as I tried to make these philosophers and their abstract ideas into a visually engaging and philosophically and historically informative story. Now, when people ask me what it was like working with my dad, it is hard to come up with even one example of friction or disagreement that took place during the process. We are both really happy with the final result, a 200-page graphic book that makes seventeenth-century philosophy—perhaps the most important and fascinating period in the history of philosophy—accessible and entertaining. In addition to having this book to show for our work, which I am incredibly proud of, I now have a far greater understanding of what my dad does for a living. And because he has an understanding of what it is about comics I find so compelling, we’re even closer now than before we worked together.

 

NadlerSteven Nadler is the William H. Hay II Professor of Philosophy and Evjue-Bascom Professor in the Humanities at the University of Wisconsin–Madison. His books include Spinoza: A Life, which won the Koret Jewish Book Award, and Rembrandt’s Jews, which was a finalist for the Pulitzer Prize. He lives in Madison. Ben Nadler is a graduate of the Rhode Island School of Design and an illustrator. He lives in Chicago. Follow him on Instagram at @bennadlercomics. They are the author and illustrator of Heretics!: The Wondrous (and Dangerous) Beginnings of Modern Philosophy.

Marilyn Roossinck: 101 viruses

Viruses are seldom considered beautiful, though visually, many are in fact stunning. While the sheer mention of them usually brings on vigilant hand-washing, some are actually beneficial to their hosts, and many are crucial to the health of our planet. Virus: An Illustrated Guide to 101 Incredible Microbes by Marilyn Roosinck offers an unprecedented look at 101 incredible microbes that infect all branches of life on Earth—from humans and other animals to insects, plants, fungi, and bacteria. Recently, Roosinck answered some questions about her gorgeously illustrated new book.

How did you come to study viruses?

MR: I started college at the Community College of Denver as an adult student (I was 22 years old), with a plan to go take two years of courses and then transfer to nursing school. I took a Microbiology course and when we studied bacterial viruses, I was totally smitten by how amazing viruses were, these very small and simple entities that could change everything! I ripped up my application to nursing school and instead transferred to the University of Colorado to pursue a degree in Biology. There were two biology departments at that time: Molecular, Cellular and Developmental Biology; and Environmental, Populational and Organismal Biology, so I did a double major and got a degree in both programs. As an undergraduate I did an independent study in a lab working on SV40, a model for many studies on mammalian viruses. I applied to the University of Colorado School of Medicine for graduate school, and I received my Ph.D. from that institution in 1986, doing a thesis on Hepatitis B virus.

Why 101 viruses?

MR: The original plan was to include 100 viruses, a nice round number and enough to allow a broad range of viruses, including those infecting all the major host groups, from bacteria to humans. Near press time the Zika virus outbreak in Brazil was attracting a lot of attention in the press, so we felt it was important to include Zika. We did not really want to remove one of the viruses that were already in the book, because these were chosen carefully, and each entry seemed important for the complete picture, so, borrowing from Hollywood, we decided 101 would also have a nice ring.

How did you choose the viruses described in the book?

MR: Making up the list of viruses to include in the book took a lot of thought. I wanted to cover every type of virus and every type of host. I also wanted to include some viruses that people would be very aware of, like influenza and Ebola. There are more human viruses in the book than those that infect any other host, because they are more thoroughly studied, and most of them are familiar to people. I also wanted to include viruses that were pathogens and those that were not. It may come as a surprise to many people that some viruses benefit their hosts, and several of these are included in the book too. I also got some help from colleagues. After making up the initial list I sent it out to a large number of virologists for comment, and I took these ideas into consideration too. Of course many people were sure that the virus they were studying was the most important virus and should be included, but I tried to ignore this as a basis for inclusion.

Do you have a favorite virus?

MR: It is hard to pick a favorite, there are so many viruses that have a fascinating natural history, or that can dramatically affect their hosts. One of my students in a Virus Ecology course that I teach at Penn State summed it up pretty well. I was introducing the topic of the how poliovirus became a serious problem in the 20th century due to changes in water treatment, and I said, “this is one of my favorite virus stories”. The student replied, “you say that about everything”.

What viruses do you work with in your own lab?

MR: I have spent about 30 years working on Cucumber mosaic virus, a serious crop pathogen that has the broadest host range of any known virus: it can infect 1200 different plant species! This means it has been very successful from an evolutionary point of view, so it is an excellent model for studying virus evolution. For the past decade I also have been studying viruses that infect fungi. My interest in these viruses began when we discovered a fungal virus in Yellowstone National Park that was beneficial to its host, allowing it to survive very high temperatures found in the geothermal areas of the park. This sparked an interest in viruses that help their hosts adapt to extreme environments, and we do a lot of work now on beneficial viruses in plants and fungi. We also are interested in the diversity of viruses, and we have done some studies looking for viruses in wild plants: there are a lot, and most of them are novel.

virus roossinck jacketMarilyn J. Roossinck is professor of virus ecology in the Department of Plant Pathology and Environmental Microbiology at Pennsylvania State University. She lives in Bellefonte, Pennsylvania. Roossinck is the author of Virus: An Illustrated Guide to 101 Incredible Microbes.

Peter Dougherty & Al Bertrand: On Being Einstein’s Publisher

by Peter Dougherty and Al Bertrand

So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest. (Albert Einstein to Robert A Thornton, 7 December 1944, EA 61-574)

For all of the scholarly influences that have defined Princeton University Press over its 111-year history, no single personality has shaped the Press’s identity as powerfully, both directly and indirectly, as Albert Einstein. The 2015 centenary of the publication of Einstein’s “Theory of General Relativity” as well as the affirmation this past February and again in June of the discovery of gravitational waves has encouraged us to reflect on this legacy and how it has informed our identity as a publisher.

The bright light cast by Einstein the scientist and by Einstein the humanist has shaped Princeton University Press in profound and far-reaching ways. It expresses itself in the Press’s standard of scholarly excellence, its emphasis on the breadth and connectedness of liberal learning across all fields, and in our mission of framing scholarly arguments to shape contemporary knowledge. All the while, Einstein’s role as a citizen of the world inspires our vision to be a truly global university press.

PUBLISHING EINSTEIN: A BRIEF HISTORY

Albert Einstein is not only Princeton University Press’s most illustrious author; he was our first best-selling author. Following his public lectures in Princeton in 1921, the Press—itself less than 20 years old at the time—published the text of those lectures, titled “The Meaning of Relativity”, in 1922. Publication followed the agitated exhortation of the Press’s then-manager, Frank Tomlinson, urging Professor Einstein to get his manuscript finished. Tomlinson wrote:

My dear Professor Einstein—

On July 6 I wrote you inquiring when we might expect to receive the manuscript of your lectures. I have had no reply to this letter. A number of people have been inquiring when the book will be ready, and we are considerably alarmed at the long delay in the receipt of your manuscript, which we were led to believe would be in our hands within a month after the lectures were delivered. The importance of the book will undoubtedly be seriously affected unless we are able to publish it within a reasonable time and I strongly urge upon you the necessity of sending us the copy at your earliest convenience. I should appreciate also the favor of a reply from you stating when we may expect to receive it.

the meaning of relativity jacketMr. Tomlinson’s letter marks something of a high point in the history of publishers’ anxiety, but far from failing, The Meaning of Relativity was a hit. It would go on to numerous successive editions, and remains very much alive today as both a print and digital book, as well as in numerous translated editions.

For all its glorious publishing history, The Meaning of Relativity can be thought of as a mere appetizer to the bounteous publishing banquet embodied in THE COLLECTED PAPERS OF ALBERT EINSTEIN, surely PUP’s most ambitious continuing publication and one of the most important editorial projects in all of scholarly publishing.

The Collected Papers of Albert Einstein

Authorized by the Einstein Estate and the PUP Board of Trustees in 1970, and supported by a generous grant from the late Harold W. McGraw, Jr., chairman of the McGraw-Hill Book Company, THE EINSTEIN PAPERS, as it evolves, is providing the first complete and authoritative account of a written legacy that ranges from Einstein’s work on the special and general theories of relativity and the origins of quantum theory, to expressions of his profound concern with civil liberties, education, Zionism, pacifism, and disarmament.

einstein old letterAn old saying has it that “good things come to those to wait,” words that ring resoundingly true regarding the EINSTEIN PAPERS. Having survived multiple obstacles in the long journey from its inception through the publication of its first volume in 1987, the Einstein Papers Project hit its stride in 2000 when Princeton University Press engaged Professor Diana Buchwald as its sixth editor, and moved the Project to Pasadena with the generous support of its new host institution, the California Institute of Technology.

Since then, Professor Buchwald and her Caltech-based editorial team, along with their international network of scholarly editors, have produced successive documentary and English translation volumes at the rate of one every eighteen months. To give you an idea of just how impressive a pace this is, the Galileo papers are still a work in progress, nearly four centuries after his death.

The EINSTEIN PAPERS, having reached and documented Einstein’s writings up to 1925, has fundamentally altered our understanding of the history of physics and of the development of general relativity, for example by destroying the myth of Einstein as a lone genius and revealing the extent to which this man, with his great gift for friendship and collegiality, was embedded in a network of extraordinary scientists in Zurich, Prague, and Berlin.

Along with the EINSTEIN PAPERS, the Press has grown a lively publishing program of books drawn from his work and about Einstein. Satellite projects include The Ultimate Quotable Einstein, as well as volumes on Einstein’s politics, his love letters, and the “miraculous year” of 1905.

Last year the Press published two new books drawn from Einstein’s writings, The Road to Relativity, and the 100th anniversary edition of Relativity: The Special and General Theory, both volumes edited by Jürgen Renn of the Max Planck Institute in Berlin, and Hanoch Gutfreund of the Hebrew University in Jerusalem.   These volumes celebrate the centenary of Einstein’s publication of the theory of general relativity in November 1915.

In this same centenary year, PUP published several other Einstein titles, including:

— Volume 14 of the Collected Papers, The Berlin Years, 1923-1925.

An Einstein Encyclopedia, edited by Alice Calaprice, Daniel Kennefick, and Robert Schulman;

Einstein: A Hundred Years of Relativity, by Andrew Robinson

Especially notable, in January 2015 the Press released THE DIGITAL EDITION OF THE COLLECTED PAPERS OF ALBERT EINSTEIN, a publishing event that has attracted extraordinary worldwide attention, scientific as well as public. This online edition is freely available to readers and researchers around the world, and represents the historic collaboration between the Press and its partners, the Einstein Papers Project at Caltech and the Albert Einstein Archive in the Hebrew University in Jerusalem.

Moreover, works by and about Einstein sit at the crossroads of two major components of the Princeton list: our science publishing program which comprises a host of fields from physics through mathematics, biology, earth science, computer science, and natural history, and our history of science program which connects PUP’s Einstein output to our humanities publishing, helping to bridge the intellectual gap between two major dimensions of our list.

Einstein’s dual legacy at Princeton University Press thus serves to bookend the conversation defined by the Press’s unusually wide-ranging array of works across and throughout the arts and sciences, from mathematics to poetry. C.P. Snow famously described the sciences and the humanities as “two cultures.” Einstein’s legacy informs our effort as a publisher to create an ongoing correspondence between those two cultures in the form of books, which uniquely serve to synthesize, connect, and nurture cross-disciplinary discourse.

EINSTEIN’S LARGER PUBLISHING INFLUENCE

Much as the living legacy of the EINSTEIN PAPERS and its related publications means to Princeton University Press as a publisher, it holds a broader meaning for us both as editors and as leaders of the institution with which we’ve long been affiliated.

Like most of our colleagues, we arrived at the Press as editors previously employed by other publishers, and having little professional interest in physics. Each of us specialized in different editorial fields, economics and classics, respectively.

Our initial disposition towards the field of physics, while full of awe, was perhaps best summed up by Woody Allen when he said: “I’m astounded by people who want to ‘know’ the universe when it’s hard enough to find your way around Chinatown.”  

But we soon discovered, as newcomers to PUP inevitably do, that the Princeton publishing legacy of Albert Einstein carried with it a set of implications beyond his specific scientific bounty that would help to shape our publishing activity, as well as that of our colleagues. We see the Einstein legacy operating in three distinct ways on PUP’s culture:

First, it reinforces the centrality of excellence as a standard: simply put, we strive to publish the core scholarly books by leading authors, senior as well as first-time. Einstein’s legacy stands as a giant-sized symbol of excellence, an invisible but constant reminder that our challenge as publishers at Princeton is not merely to be good, but to be great. As we seek greatness by publishing those books that help to define and unite the frontiers of modern scholarship, and connect our authors’ ideas with minds everywhere, we are upholding a standard embodied in the work of Albert Einstein.

The second implication of the bounty Albert Einstein is a commitment to seeing liberal knowledge defined broadly, encompassing its scientific articulation as well as its expression in the humanities and social sciences. PUP purposefully publishes an unusually wide portfolio of subject areas, encompassing not only standard university press fields such as literary criticism, art history, politics, sociology, and philosophy, but a full complement of technical fields, including biology, physics, neuroscience, mathematics, economics, and computer science. A rival publisher once half-jokingly described PUP as “the empirical knowledge capital of the world.” She was referring to our capacious cultivation of scientific and humanistic publishing, an ambitious menu for a publisher producing only around 250 books a year, but one we think gives the Press its distinctive identity.

It is no coincidence that Albert Einstein, PUP’s most celebrated author, cast his influence across many of these fields both as a scientist and as a humanist, engaged fully in the life of the mind and of the world. His legacy thus inspires us to concentrate our editorial energies on building a list that focuses on knowledge in its broadest and deepest sense—that puts into play the sometimes contentious, and even seemingly incongruous, methodologies of science and the humanities and articulates a broad yet rigorous, intellectual vision, elevating knowledge for its own sake, even as the issues change from decade to decade.

A third implication appears in Einstein’s challenge to us to be a great global publisher. Einstein, a self-professed “citizen of the world” was in many ways the first global citizen, a scholar whose scientific achievement and fame played out on a truly global scale in an age of parochial and often violent nationalist thinking.

Einstein’s cosmopolitanism has inspired the Press to pursue a path of becoming a truly global university Press. To do this, PUP has built lists in fields that are cosmopolitan in their readership, opened offices in Europe and China, expanded its author and reviewer base all over the world, and has licensed its content for translation in many languages. As we go forward, we intend to continue to build a network that allows us to connect many local publishing and academic cultures with the global scholarly conversation. This vision of the Press’s future echoes Einstein’s call for a science that transcends national boundaries.

THE FUTURE

It has been nearly a century since publication of The Meaning of Relativity and half that since the original agreement for the EINSTEIN PAPERS was authorized. We can only imagine that the originators of the latter project would be proud of what our collective effort has produced, grateful to the principals for the job they have done in bringing the PAPERS to their current status, and maybe above all, awed by the global exposure the PAPERS have achieved in their print and now digital formats.

As we continue our work with our colleagues at Caltech and the Hebrew University to extend the EINSTEIN PAPERS into the future, we are reminded of the significance of the great scientist’s legacy, especially as it bears on our identity as a global publisher, framing the pursuit of knowledge imaginatively across the arts and sciences.

The eminent Italian publisher Roberto Calasso, in his recent book, The Art of the Publisher, encourages readers to imagine a publishing house as,

“a single text formed not just by the totality of books that have been published there, but also by its other constituent elements, such as the front covers, cover flaps, publicity, the quantity of copies printed and sold, or the different editions in which the same text has been presented. Imagine a publishing house in this way and you will find yourself immersed in a very strange landscape, something that you might regard as a literary work in itself, belonging to a genre all its own.”

Now, at a time when the very definition of publishing is being undermined by technological and economic forces, it is striking to see each publisher as a “literary work unto itself.” So it is with Princeton University Press. In so far as PUP can claim a list having a diversified but well-integrated publishing vision, one that constantly strives for excellence and that stresses the forest for the trees, it is inescapably about the spirit and substance reflected in the legacy of Albert Einstein, and it is inseparable from it.

Einstein_blog (small)

 


 

Peter J. Dougherty is Director of Princeton University Press. This essay is based in part on comments he delivered at the Space-Time Theories conference at the Hebrew University in Jerusalem in January, 2015. Al Bertrand is Associate Publishing Director of Princeton University Press and Executive Editor of the Press’s history of science publishing program, including Einstein-related publications.

New History & Philosophy of Science Catalog

The History and Philosophy of Science 2016 catalog is now available:

 

Strange Glow In Strange Glow, Timothy Jorgensen relates the story of radiation, including how it helps and harms our health.
Carroll Sean B. Carroll changes the conversation about biology in The Serengeti Rules by describing how life works from the smallest cell to the largest ecosystem.
Morton Finally, Oliver Morton makes the case for geoengineering as a solution to the many challenges posed by climate change in The Planet Remade.

If you’d like updates on new titles sent directly to your inbox, subscribe to our newsletter.

Presenting the new book trailer for Strange Glow: The Story of Radiation

Five years ago on March 12, following a devastating tsunami, Fukushima Prefecture in Japan experienced the largest release of radioactive materials since the infamous nuclear meltdown in Chernobyl 30 years before. The world, understandably, was braced for the worst. But molecular radiation biologist Tim Jorgensen, author of Strange Glow: The Story of Radiation says this accident was no Chernobyl. The levels measured at Fukushima after the meltdown aren’t much higher than the annual background levels that already existed—a fact that does little to allay fears for many. How much then, do we really know about radiation and its actual dangers? Though radiation is used in everything from x-rays to cell phones, much of the population still has what Jorgensen considers an uninformed aversion to any type of exposure. In this fascinating scientific history, he describes mankind’s extraordinary, often fraught relationship with radiation.

We are pleased to present the new book trailer for Strange Glow: