Davidson student hangs onto 97 percent March Madness ranking

Are you still mourning the loss of your perfect bracket after the multiple upsets this March Madness season? Even before the Villanova and NC State match up on Saturday, 99.3 percent of brackets were busted. As experts deem a perfect March Madness bracket impossible, having a nearly perfect bracket is something to brag about. Today, we hear from David College student Nathan Argueta, who argues that knowing a thing or two about math can help with March Madness strategy.

balls

March Mathness: Calculating the Best Bracket

First and foremost… I am far from a Math Major and, prior to this class, the notion that math and sports going hand in hand seemed much more theoretical than based in reality. Now, 48 games later and a 97.2% ranking percentage on ESPN’s Bracket Contest has me thinking otherwise.

In Finite Math, we have explored the realms of creating rankings for teams based on multiple factors (win percentage, quality wins, etc.). Personally, I also take into account teams’ prior experience in the NCAA Tournament. Coaches with experience in the Sweet 16, Final Four, and Championship Game (like Rick Pitino out of Louisville) also factored into my decisions when deciding close games. Rick Pitino has made the Sweet Sixteen for each of the past four years. With a roster whose minutes are primarily distributed amongst second and third year players (players who have had success in the NCAA tournament in the past couple of years) I found it difficult to picture Louisville losing to either UCI, UNI, or even the upcoming battle against upstart NC State (who have successfully busted the majority of brackets in our class’s circuit by topping off Villanova).

In theory, the quest to picking the best bracket on ESPN begins and ends with establishing rankings for each team in the contest. Sure there are four of each seeding (1’s, 2’s, etc.), yet these rankings are very discombobulating when attempting to decide which team will win between a 5th seed and a 12th seed or a 4th seed and a 13th seed. One particular matchup that I found extremely interesting was the one between 13th seeded Harvard and 4th seeded UNC. Gut reaction call—pick UNC. UNC boasts a higher ranking and has ritual success in the postseason. But hold on—Harvard had a terrific record this year (much better than UNC’s, albeit in an easier conference). The difficult thing about comparing Harvard and UNC, however, became this establishment of difficulty of schedule. I nearly chose Harvard, were it not for the fact that Harvard got beaten by about 40 points against UVA while UNC put up more of a fight and only lost by 10 points.

In order to pick the perfect bracket (which mind you, will never happen), categorizing and ranking teams based on their wins against common opponents with prior sports knowledge is imperative. My school pride got the better of me when I chose Davidson to advance out of the Round of 64 against Iowa simply because I disregarded factors like momentum, size, and location. Looking back, it is no wonder that Davidson lost by over 30 points in what many pundits were looking to be a potential upset match. While mathematically our team’s chances could have more than competed against Iowa, in reality our season was spiraling downwards out of control since the second round of the Atlantic 10 Tournament in which we hardly beat out a surprising La Salle team and got annihilated by an injury plagued VCU team that we shut-out just nine days before. Moral of the story… brackets will be brackets and while math can certainly guide you towards a higher ranking in your class pool, you can kiss perfection good-bye. This is March Madness.

Using math for March Madness bracket picks

The countdown to fill out your March Madness brackets is on! Who are you picking to win it all?

Today, we hear from Liana Valentino, a student at the College of Charleston who works with PUP authors Amy Langville and Tim Chartier. Liana discusses how math can be applied to bracket selection.

court chalk

What are the chances your team makes it to the next round?

The madness has begun! Since the top 64 teams have been released, brackets are being made all over the country. As an avid college basketball fan my entire life, this is always my favorite time of the year. This year, I have taken a new approach to filling out brackets that consist of more than my basketball knowledge, I am using math as well.

To learn more about how the math is used to make predictions, information is available on Dr. Tim Chartier’s March Mathness website, where you can create your own bracket using math as well!

My bracket choices are decided using the Colley and Massey ranking methods; Colley only uses wins and losses, while Massey integrates the scores of the games. Within these methods, there are several different weighting options that will change the ratings produced. My strategy is to generate multiple sets of rankings, then determine the probability that each particular team will make it to a specific round. Using this approach, I am able to combine the results of multiple methods instead of having to decide on one to use for the entire bracket.

Choosing what weighting options to use is a personal decision. I will list the ones I’ve used and the reasoning behind them using my basketball awareness.

(1)

Winning games on the road should be rewarded more than winning games at home. Because of that, I use constant rates of .6 for a winning at home, 1.6 for winning away, and 1 for winning at a neutral location; these are the numbers used by the NCAA when determining RPI. I incorporate home and away weightings when performing other weighting methods as well.

(2)

Margin of victory is another factor, but a “blow out” game is defined differently depending on the person. With that in mind, I ran methods using the margin of victory to be both 15 and 20. This means if the margin of victory if 15, then games with a point differential of 15 or higher are weighed the same. These numbers are mainly from personal experience. If a team wins by 20, I would consider that a blowout, meaning the matchup was simply unfair. If a team loses by 15, which in terms of the game is five possessions, the game wasn’t necessarily a blow out, but the winning team is clearly defined as better than the opposition.

In addition to this, I chose to weight games differently if they were close. I defined a close game as a game within one possession, therefore three points. My reasoning behind this was if a team is blowing out every opponent, it means those games are obviously against mismatched opponents, so that does not say very much about them. On the other hand, a team that constantly wins close games shows character. Also, when it comes tournament time, there aren’t going to be many blow out games, therefore teams that can handle close game situations well will excel compared to those who fold under pressure. Because of this, I weighted close games, within three points, 1.5, “blow out” games, greater than 20 points, .5, and any point differential in between as 1.

(3)

Games played at different points in the season are also weighted differently. Would you say a team is the same in the first game as the last? There are three different methods to weight time, as provided by Dr. Chartier using his March Mathness site, linearly, logarithmically, and using intervals. Linear and logarithmic weights are similar in the fact that both increase the weight of the game as the season progresses. These methods can be used if you believe that games towards the end of the season are more important than games at the beginning.

Interval weighting consists of breaking the season into equal sized intervals and choosing specific weightings for each. In one instance, I weighted the games by splitting the season in half, down weighting the first half using .5, and up weighting the second half using 1.5 and 2. These decisions were made because during the first half of the season, teams are still getting to know themselves, while during the second half of the season, there are fewer excuses the make. Also, the second half of the season is when conference games are played, which are generally considered more important than non-conference games. For the people that argue that non conference play is more important because it is usually more difficult than in conference play, I also created one bracket where I up weight the first half of the season and down weight the second half.

(4)

The last different weighting method used was incorporating if a team was on a winning streak. In this case, we would weight a game higher if one team breaks their opponents winning streak. Personally, I defined a winning streak as having won four or more games in a row.

I used several combinations of these various methods and created 36 different brackets that I have used to obtain the following information. Surprisingly, Kentucky only wins the tournament 75% of the time; Arizona wins about 20%, and the remaining 5% is split between Wisconsin and Villanova. Interestingly enough, the only round Kentucky ever loses in is the Final Four, so each time they do make it to the championship, they win. Duke is the only number 1 seed never predicted to win a championship.

Villanova makes it to the championship game 70% of the time, where the only team that prevents them from doing so is Duke, who makes it 25% of the time. The remaining teams for that side of the bracket that make it are Stephen F. Austin and Virginia, both with a 2.5% chance. Kentucky makes it to the championship game 75% of the time, while Arizona makes it 22%, and Wisconsin makes it 3%. However, if Arizona makes it the championship game, they win it 88% of the time. Furthermore, Wisconsin is predicted to play in the championship game once, which they win.

The two teams Kentucky loses to in the Final Four are Arizona, and Wisconsin. During the final four, Kentucky has Arizona as an opponent 39% of the time, where Arizona wins 50% of those matchups. Kentucky’s only other opponent in the final four is Wisconsin, where Wisconsin wins that game only 5% of the time. On the other side, Villanova makes it to the final four 97% of the time, where the one instance they did not was a loss to Virginia. Villanova’s opponent in the Final Four is made up of Duke 72%, Gonzaga 19%, Stephen F. Austin 6%, Utah at 3%. The only seeds that appear in the Final Four are 1, 2, and one 12 seed, Stephen F. Austin one time.

During the Elite 8, Duke is the only number 1 seed that does not make it 100% of the time, with Utah upsetting them in 17% of their matchups. The other Elite 8 member is Gonzaga 97% of the time. Kentucky’s opponent in this round is Notre Dame 47% and Kansas 53% of the time.

In the Sweet 16, there are eight teams that make it every time: Kentucky, Wisconsin, Villanova, Duke, Arizona, Virginia, Gonzaga, and Notre Dame. Kansas is the only number 2 seed not on the list as Wichita State is predicted to beat them in 8% of their matchups. Kentucky’s opponent in the Sweet 16 is Maryland 39%, West Virginia 36%, Valparaiso 14%, and Buffalo 11%. Valparaiso is the only 13 seed predicted to make it to the Sweet 16. Villanova’s opponent is either Northern Iowa 61% or Louisville 38%. Duke appears to be facing either Utah 67%, Stephen F. Austin 19%, or Georgetown 14%.

Now, for the teams that make it into the third round. I’m not sure how many people consider a 9 seed beating an 8 seed an upset, but the number 9 seeds that are expected to progress are Purdue, Oklahoma State, and St. John’s. In regards to the 10 seed, Davidson is the most likely to continue with a 47% chance to move past Iowa, which is the highest percentage for an upset not including the 8-9 seed matchups. Following them is 11 seed Texas, who have a 42% of defeating Butler. For the 12 seeds, Buffalo is the most likely to continue with a 36% chance of beating Virginia. The 13 seed with the best chance of progressing is Valparaiso with 19% over Maryland. Lastly, the only 14 seeds that move on are Georgia State and Albany, which only happens a mere 8% of the time.

In general, Arizona seems to win the championship when using Massey and linear or interval weighting without home and away. This could be because most of their losses happen during the beginning of the season, while they win important games towards the end. Using the Colley method is when most of the upsets are predicted. For example, Stephen F. Austin making it to the championship game happens using the Colley logarithmic weighting. Davidson beating Iowa in the second round is also found many times using different Colley methods.

Overall, there are various methods that include various factors, but there are still qualitative variables that we don’t include. On the other hand, math can do a lot more than people expect. Considering Kentucky is undefeated, I presumed the math would never show them losing, but there is a lot more in the numbers than you think. Combining the various methods on 36 different brackets, I computed the probabilities of teams making it to specific rounds and decided to make a bracket using the combined data. This makes it so I don’t have to decide on solely one weighting that determines my bracket; instead, I use the results from several methods. Unfortunately, there is always one factor we cannot consider, luck! That is why we can only make estimates and never be certain. From my results, I would predict to see a Final Four of Kentucky, Arizona, Villanova, Duke; a championship game of Kentucky, Villanova; and the 2015 national champion being Kentucky.