Kip Thorne & Roger Blandford on Modern Classical Physics

PhysicsThis first-year, graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn’t: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip S. Thorne, winner of the 2017 Nobel Prize in Physics, and Roger D. Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers.

This book emerged from a course you both began teaching nearly 4 decades ago. What drove you to create the course, and ultimately to write this book?

KST: We were unhappy with the narrowness of physics graduate education in the United States. We believed that every masters-level or PhD physicist should be familiar with the basic concepts of all the major branches of classical physics and should have some experience applying them to real world phenomena. But there was no obvious route to achieve this, so we created our course.

RDB: Of course we had much encouragement from colleagues who helped us teach it and students who gave us invaluable feedback on the content.

The title indicates that the book is a “modern” approach to classical physics (which emphasizes physical phenomena at macroscopic scales). What specifically is “modern” in your book’s approach to this subject?

KST: Classical-physics ideas and tools are used extensively today in research areas as diverse as astrophysics, high-precision experimental physics, optical physics, biophysics, controlled fusion, aerodynamics, computer simulations, etc. Our book draws applications from all these modern topics and many more. Also, these modern applications have led to powerful new viewpoints on the fundamental concepts of classical physics, viewpoints that we elucidate—for example, quantum mechanical viewpoints and language for purely classical mode-mode coupling in nonlinear optics and in nonlinear plasma physics.

Why do you feel that it is so important for readers to become more familiar with classical physics, beyond what they may have been introduced to already?

KST: In their undergraduate and graduate level education, most physicists have been exposed to classical mechanics, electromagnetic theory, elementary thermodynamics, and little classical physics beyond this. But in their subsequent careers, most physicists discover that they need an understanding of other areas of classical physics (and this book is a vehicle for that).

In many cases they may not even be aware of their need. They encounter problems in their research or in R&D where powerful solutions could be imported from other areas of classical physics, if only they were aware of those other areas. An example from my career: in the 1970s, when trying to understand recoil of a binary star as it emits gravitational waves, I, like many relativity physicists before me, got terribly confused. Then my graduate student, Bill Burke—who was more broadly educated than I—said “we can resolve the confusion by adopting techniques that are used to analyze boundary layers in fluid flows around bodies with complicated shapes.” Those techniques (matched asymptotic expansions), indeed, did the job, and through Bill, they were imported from fluid mechanics into relativity.

RDB: Yes. To give a second example, when I was thinking about ways to accelerate cosmic rays, I recalled graduate lectures on stellar dynamics and found just the tools I needed.

You also mention in the book that geometry is a deep theme and important connector of ideas. Could you explain your perspective, and how geometry is used thematically throughout the book?

KST: The essential point is that, although coordinates are a powerful, and sometimes essential, tool in many calculations, the fundamental laws of physics can be expressed without the aid of coordinates; and, indeed, their coordinate-free expressions are generally elegant and exceedingly powerful. By learning to think about the laws in coordinate-free (geometric) language, a physicist acquires great power. For example, when one searches for new physical laws, requiring that they be geometric (coordinate-free) constrains enormously the forms that they may take. And in many practical computations (for example, of the relativistic Doppler shift), a geometric route to the solution can be faster and much more insightful than one that uses coordinates. Our book is infused with this.

RDB: We are especially keen on presenting these fundamental laws in a manner which makes explicit the geometrically formulated conservation laws for mass, momentum, energy, etc. It turns out that this is often a good starting point when one wants to solve these equations numerically. But ultimately, a coordinate system must be introduced to execute the calculations and interpret the output.

One of the areas of application that you cover in the book is cosmology, an area of research that has undergone a revolution over the past few decades. What are some of the most transformative discoveries in the field’s recent history? How does classical physics serve to underpin our modern understanding of how the universe formed and is evolving? What are some of the mysteries that continue to challenge scientists in the field of cosmology?   

RDB: There have indeed been great strides in understanding the large scale structure and evolution of the universe, and there is good observational support for a comparatively simple description. Cosmologists have found that 26 percent of the energy density in the contemporary, smoothed-out universe is in the form of “dark matter,” which only seems to interact through its gravity. Meanwhile, 69 percent is associated with a “cosmological constant,” as first introduced by Einstein and which causes the universe to accelerate. The remaining five percent is the normal baryonic matter which we once thought accounted for essentially all of the universe. The actual structure that we observe appears to be derived from almost scale-free statistically simple, random fluctuations just as expected from an early time known as inflation. Fleshing out the details of this description is almost entirely an exercise in classical physics. Even if this description is validated by future observations, much remains to be understood, including the nature of dark matter and the cosmological constant, what fixes the normal matter density, and the great metaphysical question of what lies beyond the spacetime neighborhood that we can observe directly.

KST: Remarkably, in fleshing out the details in the last chapter of our book, we utilize classical-physics concepts and results from every one of the other chapters. ALL of classical physics feeds into cosmology!

The revolution in cosmology that you describe depends upon many very detailed observations using telescopes operating throughout the entire electromagnetic spectrum and beyond. How do you deal with this in the book?

RDB: We make no attempt to describe the rich observational and experimental evidence, referring the reader to many excellent texts on cosmology that describe these in detail. However, we do describe some of the principles that underlie the design and operation of the radio and optical telescopes that bring us cosmological data.

There is has also been a lot of excitement regarding the recent observation by LIGO of gravitational waves caused by merging black holes. How is this subject covered in the book, and how, briefly, are some of the concepts of classical physics elucidated in your description of this cutting-edge research area?   

KST: LIGO’s gravitational wave detectors rely on an amazingly wide range of classical physics concepts and tools, so time and again we draw on LIGO for illustrations. The theory of random processes, spectral densities, the fluctuation-dissipation theorem, the Fokker-Planck equation; shot noise, thermal noise, thermoelastic noise, optimal filters for extracting weak signals from noise; paraxial optics, Gaussian beams, the theory of coherence, squeezed light, interferometry, laser physics; the interaction of gravitational waves with light and with matter; the subtle issue of the conservation or non conservation of energy in general relativity—all these and more are illustrated by LIGO in our book.

What are some of the classical physics phenomena in every day life that you are surprised more people do not fully understand—whether they are lay people, students, or scientists?

KST: Does water going down a drain really have a strong preference for clockwise in the northern hemisphere and counterclockwise in the south? How strong? What happens as you cross the equator? How are ocean waves produced? Why do stars twinkle in the night sky, and why doesn’t Jupiter twinkle? How does a hologram work? How much can solid objects be stretched before they break, and why are there such huge differences from one type of solid (for example thin wire) to another (a rubber band)?

RDB: I agree and have to add that I am regularly humbled by some every day phenomenon that I cannot explain or for which I have carried around for years a fallacious explanation. There is, rightly, a lot of focus right now on climate change, energy, hurricanes, earthquakes, and so on. We hear about them every day. We physicists need to shore up our understanding and do a better job of communicating this.

Do you believe that some of your intended readers might be surprised to discover the deep relevance of classical physics to certain subject areas?

KST: In subjects that physicists think of as purely quantum, classical ideas and classical computational techniques can often be powerful. Condensed matter physics is an excellent example—and accordingly, our book includes a huge number of condensed-matter topics. Examples are Bose-Einstein condensates, the van der Waals gas, and the Ising model for ferromagnetism.

RDB: Conversely, quantum mechanical techniques are often used to simplify purely classical problems, for example in optics.

Writing a book is always an intellectual journey. In the preparation of this tremendously wide-ranging book, what were some of the most interesting things you learned along the way?

KST: How very rich and fascinating is the world of classical physics—far more so than we thought in 1980 when we embarked on this venture. And then there are the new inventions, discoveries, and phenomena that did not exist in 1980 but were so important or mind-boggling that we could not resist including them in our book. For example, optical-frequency combs and the phase-locked lasers that underlie them, Bose-Einstein condensates, the collapse of the World Trade Center buildings on 9/11/01, the discovery of gravitational waves and the techniques that made it possible, laser fusion, and our view of the universe at large.

Kip S. Thorne is the Feynman Professor Emeritus of Theoretical Physics at Caltech. His books include Gravitation and Black Holes and Time Warps. Roger D. Blandford is the Luke Blossom Professor of Physics and the founding director of the Kavli Institute of Particle Astrophysics and Cosmology at Stanford University. Both are members of the National Academy of Sciences.


Climate Dynamics

Cook_Climate_Dynamics “Climate change and its impacts are being embraced by a wider community than just earth scientists. A useful textbook, Climate Dynamics covers the basic science required to gain insights into what constitutes the climate system and how it behaves. While still being quantitative, the material is written in a lecture-note style that creates a simplified, but not simple, approach to teaching this complex subject.”–Chris E. Forest, Pennsylvania State University

Climate Dynamics
Kerry H. Cook

Climate Dynamics is an advanced undergraduate-level textbook that provides an essential foundation in the physical understanding of the earth’s climate system. The book assumes no background in atmospheric or ocean sciences and is appropriate for any science or engineering student who has completed two semesters of calculus and one semester of calculus-based physics.

  • Makes a physically based, quantitative understanding of climate change accessible to all science, engineering, and mathematics undergraduates
  • Explains how the climate system works and why the climate is changing
  • Reinforces, applies, and connects the basic ideas of calculus and physics
  • Emphasizes fundamental observations and understanding


Table of Contents

Sample this book:

Chapter 1 [PDF]

Request an examination copy.


Einstein Gravity in a Nutshell

Zee_EinsteinGravityNutshell Einstein Gravity in a Nutshell is a remarkably complete and thorough textbook on general relativity, written in a refreshing and engaging style. Zee leads us through all the major intellectual steps that make what is surely one of the most profound and beautiful theories of all time. The book is enjoyable and informative in equal measure. Quite an achievement.”–Pedro Ferreira, University of Oxford

Einstein Gravity in a Nutshell
A. Zee

  • Provides an accessible introduction to Einstein’s general theory of relativity
  • Guides readers from Newtonian mechanics to the frontiers of modern research
  • Emphasizes symmetry and the Einstein-Hilbert action
  • Covers topics not found in standard textbooks on Einstein gravity
  • Includes interesting historical asides
  • Features numerous exercises and detailed appendices
  • Ideal for students, physicists, and scientifically minded lay readers
  • Solutions manual (available only to teachers)


Table of Contents

Sample this textbook: Introduction [PDF]

Additional information about the In the Nutshell series

Request an examination copy.


Introducing a New Biophysics Textbook

Bialek_Biophysics_caseAre you headed to Philadelphia for the Biophysical Society’s 57th Annual Meeting (#bps13) starting on February 2nd? They are expecting over 6,000 biophysicists to attend. It’s a great opportunity to see what is new in the field. And speaking of what is new in the field, professors and students, you will want to check this out – it is the textbook you’ve been waiting for:

Biophysics: Searching for Principles
by William Bialek

William Bialek provides the first graduate-level introduction to biophysics aimed at physics students. Interactions between the fields of physics and biology reach back over a century, and some of the most significant developments in biology–from the discovery of DNA’s structure to imaging of the human brain–have involved collaboration across this disciplinary boundary. For a new generation of physicists, the phenomena of life pose exciting challenges to physics itself, and biophysics has emerged as an important subfield of this discipline. Featuring numerous problems and exercises throughout, Biophysics emphasizes the unifying power of abstract physical principles to motivate new and novel experiments on biological systems.

–Covers a range of biological phenomena from the physicist’s perspective
–Features 200 problems
–Draws on statistical mechanics, quantum mechanics, and related mathematical concepts
–Includes an annotated bibliography and detailed appendixes
–Instructor’s manual (available only to teachers)
–Illustration Package available
–Supplementary Materials available

William Bialek is the John Archibald Wheeler/Battelle Professor in Physics at Princeton University, where he is also a member of the multidisciplinary Lewis-Sigler Institute for Integrative Genomics, and is Visiting Presidential Professor of Physics at the Graduate Center of the City University of New York. He is the coauthor of Spikes: Exploring the Neural Code.

“Bialek’s excellent book bears the stamp of both his originality and technical prowess. What I look for when I read a book is something unique that I know I won’t find anywhere else. Bialek delivers that in spades on a topic of great interest to scientists of all stripes.”–Rob Phillips, California Institute of Technology

For more information, please visit:

We hope you enjoy Philadelphia and stay warm!