Welcome to the Universe microsite receives a Webby

We’re pleased to announce that the accompanying microsite to Welcome to the Universe by Neil DeGrasse Tyson, Michael A. Strauss, and J. Richard Gott has won a People’s Choice Webby in the Best Use of Animation or Motion Graphics category. Congratulations to Eastern Standard, the web designer, on a beautifully designed site.

Winning a Webby is especially gratifying because it honors how much fun we had making the site. We knew we wanted an unconventional approach that would mirror both the complexity and accessibility of the book it was meant to promote. Our wonderful in-house team and creative partners, Eastern Standard took on this challenge, and we are so happy with the results.
—Maria Lindenfeldar, Creative Director, Princeton University Press 

Creating this microsite was a wonderful experiment for us at Princeton University Press.  We wanted to explore how we, as a publisher, could present one of our major books to the public in a compelling way in the digital environment.  Ideally, we had a vision of creating a simple site with intuitive navigation that would give readers an inviting mini-tour through the topics of the book, Welcome to the Universe, by Neil deGrasse Tyson, Michael Strauss, and Richard Gott.  The animation was meant to be subtle, but meaningful, and to gently encourage user interaction, so that the focus would always remain immersing the reader in the content of the book – what we feel is the most interesting part!  We were very happy with how it turned out and now all the more thrilled and honored that the site was chosen for a Webby!
—Ingrid Gnerlich, Science Publisher, Princeton University Press

Everyone’s favorite genius takes the spotlight

Along with Einstein fans everywhere, we’re fairly excited to binge-watch National Geographic’s upcoming series, “Genius”, premiering Tuesday, April 25. The first episode shows a young Einstein (Johnny Flynn), poring over the nature of time, a concept well covered in our An Einstein Encyclopedia along with most any other topic that could interest an Einstein devotee, from fame, to family, to politics, to myths and misconceptions. In Genius, prepare to see a show-down between a feisty young Einstein and a particularly rigid teacher. Engrossing to watch—and bound to leave viewers wanting more. Not to worry: “Teachers, education and schools attended” are covered in depth in the Encyclopedia, as are “Rivals”.

Episode 2 of Genius promises to show Einstein embarking, after much head-butting, on a love affair with the determined Mileva Maric. Often remembered as the lone, eccentric, Princeton-based thinker, Einstein’s youthful relationship with Maric sometimes comes as a surprise even to Einstein fans. And yet in 1903, a young Albert Einstein married his confidante despite the objections of his parents. Her influence on his most creative years has given rise to much discussion—but theirs was only one of several romantic interests over the course of Einstein’s life that competed with his passion for physics. Einstein’s love life has been the subject of intense speculation over the years, but don’t believe everything you hear: “Romantic Interests: Actual, Probable, and Possible”, all included in the Encyclopedia, won’t leave you guessing.

Mileva Maric, first wife of Albert Einstein

 An Einstein Encyclopedia is the single most complete guide to Einstein’s life, perfect for browsing and research alike. Written by three leading Einstein scholars who draw on their combined wealth of expertise gained during their work on the Collected Papers of Albert Einstein, this accessible reference features more than one hundred entries and is divided into three parts covering the personal, scientific, and public spheres of Einstein’s life.

With science celebrated far and wide along with Earth Day this past weekend, what better time to get your dose of genius and #ReadUp.

 

 

Celebration of Science: A reading list

This Earth Day 2017, Princeton University Press is celebrating science in all its forms. From ecology to psychology, astronomy to earth sciences, we are proud to publish books at the highest standards of scholarship, bringing the best work of scientists to a global audience. We all benefit when scientists are given the space to conduct their research and push the boundaries of the human store of knowledge further. Read on for a list of essential reading from some of the esteemed scientists who have published with Princeton University Press.

The Usefulness of Useless Knowledge
Abraham Flexner and Robbert Dijkgraaf

Use

The Serengeti Rules
Sean B. Carroll

Carroll

Honeybee Democracy
Thomas D. Seeley

Seeley

Silent Sparks
Sara Lewis

Lewis

Where the River Flows
Sean W. Fleming

Fleming

How to Clone a Mammoth
Beth Shapiro

Shapiro

The Future of the Brain
Gary Marcus & Jeremy Freeman

Brain

Searching for the Oldest Stars
Anna Frebel

Frebel

Climate Shock
Gernot Wagner & Martin L. Weitzman

Climate

Welcome to the Universe
Neil DeGrasse Tyson, Michael A. Strauss, and J. Richard Gott

Universe

The New Ecology
Oswald J. Schmitz

Schmitz

A peek inside The Calculus of Happiness

What’s the best diet for overall health and weight management? How can we change our finances to retire earlier? How can we maximize our chances of finding our soul mate? In The Calculus of Happiness, Oscar Fernandez shows us that math yields powerful insights into health, wealth, and love. Moreover, the important formulas are linked to a dozen free online interactive calculators on the book’s website, allowing one to personalize the equations. A nutrition, personal finance, and relationship how-to guide all in one, The Calculus of Happiness invites you to discover how empowering mathematics can be. Check out the trailer to learn more:

The Calculus of Happiness: How a Mathematical Approach to Life Adds Up to Health, Wealth, and Love, Oscar E. Fernandez from Princeton University Press on Vimeo.

FernandezOscar E. Fernandez is assistant professor of mathematics at Wellesley College and the author of Everyday Calculus: Discovering the Hidden Math All around Us. He also writes about mathematics for the Huffington Post and on his website, surroundedbymath.com.

Welcome to the Universe microsite nominated for a Webby

We’re thrilled to announce that the microsite for Welcome to the Universe by Neil DeGrasse Tyson, Michael A. Strauss, and J. Richard Gott, designed by Eastern Standard, has been nominated for a Webby in the Best Use of Animation or Motion Graphics category. Be sure to check it out and vote for the best of the internet!

webby

 

Just in time for Pi Day, presenting The Usefulness of Useless Knowledge

In his classic essay “The Usefulness of Useless Knowledge,” Abraham Flexner, the founding director of the Institute for Advanced Study in Princeton and the man who helped bring Albert Einstein to the United States, describes a great paradox of scientific research. The search for answers to deep questions, motivated solely by curiosity and without concern for applications, often leads not only to the greatest scientific discoveries but also to the most revolutionary technological breakthroughs. In short, no quantum mechanics, no computer chips. This brief book includes Flexner’s timeless 1939 essay alongside a new companion essay by Robbert Dijkgraaf, the Institute’s current director, in which he shows that Flexner’s defense of the value of “the unobstructed pursuit of useless knowledge” may be even more relevant today than it was in the early twentieth century. Watch the trailer to learn more:

The Usefulness of Useless Knowledge by Abraham Flexner from Princeton University Press on Vimeo.

Michael Strauss: Our universe is too vast for even the most imaginative sci-fi

As an astrophysicist, I am always struck by the fact that even the wildest science-fiction stories tend to be distinctly human in character. No matter how exotic the locale or how unusual the scientific concepts, most science fiction ends up being about quintessentially human (or human-like) interactions, problems, foibles and challenges. This is what we respond to; it is what we can best understand. In practice, this means that most science fiction takes place in relatively relatable settings, on a planet or spacecraft. The real challenge is to tie the story to human emotions, and human sizes and timescales, while still capturing the enormous scales of the Universe itself.

Just how large the Universe actually is never fails to boggle the mind. We say that the observable Universe extends for tens of billions of light years, but the only way to really comprehend this, as humans, is to break matters down into a series of steps, starting with our visceral understanding of the size of the Earth. A non-stop flight from Dubai to San Francisco covers a distance of about 8,000 miles – roughly equal to the diameter of the Earth. The Sun is much bigger; its diameter is just over 100 times Earth’s. And the distance between the Earth and the Sun is about 100 times larger than that, close to 100 million miles. This distance, the radius of the Earth’s orbit around the Sun, is a fundamental measure in astronomy; the Astronomical Unit, or AU. The spacecraft Voyager 1, for example, launched in 1977 and, travelling at 11 miles per second, is now 137 AU from the Sun.

But the stars are far more distant than this. The nearest, Proxima Centauri, is about 270,000 AU, or 4.25 light years away. You would have to line up 30 million Suns to span the gap between the Sun and Proxima Centauri. The Vogons in Douglas Adams’s The Hitchhiker’s Guide to the Galaxy (1979) are shocked that humans have not travelled to the Proxima Centauri system to see the Earth’s demolition notice; the joke is just how impossibly large the distance is.

Four light years turns out to be about the average distance between stars in the Milky Way Galaxy, of which the Sun is a member. That is a lot of empty space! The Milky Way contains about 300 billion stars, in a vast structure roughly 100,000 light years in diameter. One of the truly exciting discoveries of the past two decades is that our Sun is far from unique in hosting a retinue of planets: evidence shows that the majority of Sun-like stars in the Milky Way have planets orbiting them, many with a size and distance from their parent star allowing them to host life as we know it.

Yet getting to these planets is another matter entirely: Voyager 1 would arrive at Proxima Centauri in 75,000 years if it were travelling in the right direction – which it isn’t. Science-fiction writers use a variety of tricks to span these interstellar distances: putting their passengers into states of suspended animation during the long voyages, or travelling close to the speed of light (to take advantage of the time dilation predicted in Albert Einstein’s theory of special relativity). Or they invoke warp drives, wormholes or other as-yet undiscovered phenomena.

When astronomers made the first definitive measurements of the scale of our Galaxy a century ago, they were overwhelmed by the size of the Universe they had mapped. Initially, there was great skepticism that the so-called ‘spiral nebulae’ seen in deep photographs of the sky were in fact ‘island universes’ – structures as large as the Milky Way, but at much larger distances still. While the vast majority of science-fiction stories stay within our Milky Way, much of the story of the past 100 years of astronomy has been the discovery of just how much larger than that the Universe is. Our nearest galactic neighbour is about 2 million light years away, while the light from the most distant galaxies our telescopes can see has been travelling to us for most of the age of the Universe, about 13 billion years.

We discovered in the 1920s that the Universe has been expanding since the Big Bang. But about 20 years ago, astronomers found that this expansion was speeding up, driven by a force whose physical nature we do not understand, but to which we give the stop-gap name of ‘dark energy’. Dark energy operates on length- and time-scales of the Universe as a whole: how could we capture such a concept in a piece of fiction?

The story doesn’t stop there. We can’t see galaxies from those parts of the Universe for which there hasn’t been enough time since the Big Bang for the light to reach us. What lies beyond the observable bounds of the Universe? Our simplest cosmological models suggest that the Universe is uniform in its properties on the largest scales, and extends forever. A variant idea says that the Big Bang that birthed our Universe is only one of a (possibly infinite) number of such explosions, and that the resulting ‘multiverse’ has an extent utterly beyond our comprehension.

The US astronomer Neil deGrasse Tyson once said: ‘The Universe is under no obligation to make sense to you.’ Similarly, the wonders of the Universe are under no obligation to make it easy for science-fiction writers to tell stories about them. The Universe is mostly empty space, and the distances between stars in galaxies, and between galaxies in the Universe, are incomprehensibly vast on human scales. Capturing the true scale of the Universe, while somehow tying it to human endeavours and emotions, is a daunting challenge for any science-fiction writer. Olaf Stapledon took up that challenge in his novel Star Maker (1937), in which the stars and nebulae, and cosmos as a whole, are conscious. While we are humbled by our tiny size relative to the cosmos, our brains can none the less comprehend, to some extent, just how large the Universe we inhabit is. This is hopeful, since, as the astrobiologist Caleb Scharf of Columbia University has said: ‘In a finite world, a cosmic perspective isn’t a luxury, it is a necessity.’ Conveying this to the public is the real challenge faced by astronomers and science-fiction writers alike. Aeon counter – do not remove

UniverseMichael A. Strauss is professor of astrophysics at Princeton University and coauthor with Richard Gott and Neil DeGrasse Tyson of Welcome to The Universe: An Astrophysical Tour.

This article was originally published at Aeon and has been republished under Creative Commons.

Robbert Dijkgraaf on The Usefulness of Useless Knowledge

FlexnerA forty-year tightening of funding for scientific research has meant that resources are increasingly directed toward applied or practical outcomes, with the intent of creating products of immediate value. In such a scenario, it makes sense to focus on the most identifiable and urgent problems, right? Actually, it doesn’t. In his classic essay “The Usefulness of Useless Knowledge,” Abraham Flexner, the founding director of the Institute for Advanced Study in Princeton, describes a great paradox of scientific research. The search for answers to deep questions, motivated solely by curiosity and without concern for applications, often leads not only to the greatest scientific discoveries but also to the most revolutionary technological breakthroughs. This brief book includes Flexner’s timeless 1939 essay alongside a new companion essay by Robbert Dijkgraaf, the Institute’s current director. Read on for Dijkgraaf’s take on the importance of curiosity-driven research, how we can cultivate it, and why Flexner’s essay is more relevant than ever.

The title of the book, The Usefulness of Useless Knowledge, is somewhat enigmatic—what does it mean?

RD: Abraham Flexner, an educational reformer and founding director of the Institute for Advanced Study, wrote an essay with this title for Harper’s magazine in 1939. He believed that there was an indispensable connection between intellectual and spiritual life—“useless forms of activity”—and undreamed-of utility.

Cited as a philanthropic hero by Warren Buffett, Flexner was responsible for bringing Albert Einstein to America to join the Institute’s inaugural Faculty, just when Hitler came to power in 1933.

A true visionary, Flexner was acutely aware that our current conception of what is useful might suffice for the short term but would inevitably become too narrow over time. He believed that the best way to advance understanding and knowledge is by enabling leading scientists and scholars to follow their natural curiosity, intuition, and inquiry, without concern for utility but rather with the purpose of discovering answers to the most fascinating questions of their time.

Flexner’s 1939 article is reprinted in the book along with a companion essay that you have written. What did you realize in revisiting Flexner’s ideas?

RD: One large realization is that while the world has changed dramatically in terms of technological progress since Flexner’s time, human beings still wrestle with the benefits and risks of freedom, with power and productivity versus imagination and creativity, and this dichotomy continues to limit our evolution and sometimes leads to abhorrent behavior as we saw during Flexner’s era and which continues to haunt ours today.

A significant difference is that in the twenty-first century, we are increasingly creating a one-dimensional world determined by external metrics. Why? Our world is becoming ever larger and more complex. In order to provide some clarity, we try to quantify that world with share prices and rankings. In the process, we have exiled our intuition and have lost contact with our environment.

We need to return to timeless values like searching for the truth, while being honest about the things we don’t understand. There is also a great need for passion. I wake up every morning with the thought: I want to do something that I feel good about. As a society, we have largely lost that feeling. We need to reconsider: what kind of world do we want exactly? And what new systems do we need to do good things?

Why is curiosity-driven basic research important today and how can we cultivate it?

RD: The progress of our modern age, and of the world of tomorrow, depends not only on technical expertise, but also on unobstructed curiosity and the benefits of traveling far upstream, against the current of practical considerations. Much of the knowledge developed by basic research is made publicly accessible and so benefits society as a whole, spreading widely beyond the narrow circle of individuals who, over years and decades, introduce and develop the ideas. Fundamental advances in knowledge cannot be owned or restricted by people, institutions, or nations, certainly not in the current age of the Internet. They are truly public goods.

But driven by an ever-deepening lack of funding, against a background of economic uncertainty, global political turmoil, and ever-shortening time cycles, research criteria are becoming dangerously skewed towards conservative short-term goals that may address more immediate problems, but miss out on the huge advances that human imagination can bring in the long term.

The “metrics” used to assess the quality and impact of research proposals—even in the absence of a broadly accepted framework for such measurements—systematically undercut pathbreaking scholarship in favor of more predictable goal-directed research. It can easily take many years, even decades, or sometimes, a century, as in the case of the gravitational waves predicted by Einstein’s theory of relativity that were only detected last year, for the societal value of an idea to come to light.

In order to enable and encourage the full cycle of scientific innovation, we need to develop a solid portfolio of research in much the same way as we approach well-managed financial resources. Such a balanced portfolio would contain predictable and stable short-term investments, as well as long-term bets that are intrinsically more risky but can potentially earn off-the-scale rewards. The path from exploratory basic research to practical applications is not one-directional and linear, but rather complex and cyclic, with resultant technologies enabling even more fundamental discoveries. Flexner and I give many examples of this in our book, from the development of electromagnetic waves that carry wireless signals to quantum mechanics and computer chips.

How do curiosity and imagination enable progress?

RD: An attitude aimed at learning and investigating, wherein imagination and creativity play an important role, is essential not only in scientific institutions but in every organization. Companies and institutions themselves need to develop the inquisitive and explorative approach they would like to see in their employees. Organizations are often trapped in the framework of their own thinking. Out-of-the-box thinking is very hard, because one doesn’t know where the box is. At the basis of progress lies a feeling of optimism: problems can be solved. Organizations need to cultivate the capacity to visualize the future and define their position in it.

What conditions are necessary for the spark of a new idea or theory?

RD: If we want more imagination, creativity, and curiosity, we need to accept that people occasionally run in the wrong direction. As a business, institution, or society, we need to allow once again for failure. Encourage workers to spend a certain percentage of their time on the process of exploration. A brilliant idea never appears out of the blue, but is generated simply by allowing people to try out things. Nine times out of ten, nothing results, but something may emerge suddenly and unexpectedly. That free space and those margins of error are increasingly under pressure in our head, our role, our organization, and our society. I am worried about the loss of that exploratory force.

What don’t we know, and how does uncertainty drive advancement?

RD: How did the universe begin and how does it end? What is the origin of life on Earth and possibly elsewhere in the cosmos? What in our brain makes us conscious and human? In addition to these fundamental questions and many others, we are struggling with major issues about time and space, about matter and energy. What are our ideas on this and what questions are we trying to answer? In science, a long process precedes any outcome. In general, the media only has time and space to pay attention to outcomes. But for scientists it’s precisely the process that counts, walking together down that path. It’s the questions that engage us, not the answers.

Abraham Flexner (1866–1959) was the founding director of the Institute for Advanced Study, one of the world’s leading institutions for basic research in the sciences and humanities. Robbert Dijkgraaf, a mathematical physicist who specializes in string theory, is director and Leon Levy Professor at the Institute for Advanced Study. A distinguished public policy adviser and passionate advocate for science and the arts, he is also the cochair of the InterAcademy Council, a global alliance of science academies, and former president of the Royal Netherlands Academy of Arts and Sciences. They are the authors of The Usefulness of Useless Knowledge.

Dalton Conley & Jason Fletcher on how genomics is transforming the social sciences

GenomeSocial sciences have long been leery of genetics, but in the past decade, a small but intrepid group of economists, political scientists, and sociologists have harnessed the genomics revolution to paint a more complete picture of human social life. The Genome Factor shows how genomics is transforming the social sciences—and how social scientists are integrating both nature and nurture into a unified, comprehensive understanding of human behavior at both the individual and society-wide levels. The book raises pertinent questions: Can and should we target policies based on genotype? What evidence demonstrates how genes and environments work together to produce socioeconomic outcomes? Recently, The Genome Factor‘s authors, Dalton Conley and Jason Fletcher, answered some questions about their work.

What inspired you to write The Genome Factor?

JF: Our book discusses how findings and theories in genetics and biological sciences have shaped social science inquiry—the theories, methodologies, and interpretations of findings used in economics, sociology, political science, and related disciplines —both historically and in the newer era of molecular genetics. We have witnessed, and participated in, a period of rapid change and cross-pollination between the social and biological sciences. Our book draws out some of the major implications of this cross-pollination—we particularly focus on how new findings in genetics has overturned ideas and theories in the social sciences. We also use a critical eye to evaluate what social scientists and the broader public should believe about the overwhelming number of new findings produced in genetics.

What insights did you learn in writing the book?

JF: Genetics, the human genome project in particular, has been quite successful and influential in the past two decades, but has also experienced major setbacks and is still reeling from years of disappointments and a paradigm shift. There has been a major re-evaluation and resetting of expectations the clarity and power of genetic effects. Only 15 years ago, a main model was on the so-called OGOD model—one gene, one disease. While there are a few important examples where this model works, it has mostly failed. This failure has had wide implications on how genetic analysis is conducted as well as a rethinking of previous results; many of which are now thought to false findings. Now, much analysis is conducted using data 10s or 100s of thousands of people because the thinking is that most disease is caused by tens, hundreds, or even thousands of genes that each have a tiny effect. This shift has major implications for social science as well. It means genetic effects are diffuse and subtle, which makes it challenging to combine genetic and social science research. Genetics has also shifted from a science of mechanistic understanding to a large scale data mining enterprises. As social scientists, this approach is in opposition to our norms of producing evidence. This is something we will need to struggle through in the future.

How did you select the topics for the book chapters?

JF: We wanted to tackle big topics across multiple disciplines. We discuss some of the recent history of combining genetics and social science, before the molecular revolution when “genetics” were inferred from family relationships rather than measured directly. We then pivot to provide examples of cutting edge research in economics and sociology that has incorporated genetics to push social science inquiry forward. One example is the use of population genetic changes as a determinant of levels of economic development across the world. We also focus our attention to the near future and discuss how policy decisions may be affected by the inclusion of genetic data into social science and policy analysis. Can and should we target policies based on genotype? What evidence do we have that demonstrates how genes and environments work together to produce socioeconomic outcomes?

What impact do you hope The Genome Factor will have?

JF: We hope that readers see the promise as well as the perils of combining genetic and social science analysis. We provide a lot of examples of ongoing work, but also want to show the reader how we think about the larger issues that will remain as genetics progresses. We seek to show the reader how to look through a social science lens when thinking about genetic discoveries. This is a rapidly advancing field, so the particular examples we discuss will be out of date soon, but we want our broader ideas and lens to have longer staying power. As an example, advances in gene editing (CRISPR) have the potential to fundamentally transform genetic analysis. We discuss these gene editing discoveries in the context of some of their likely social impacts.

Dalton Conley is the Henry Putnam University Professor of Sociology at Princeton University. His many books include Parentology: Everything You Wanted to Know about the Science of Raising Children but Were Too Exhausted to Ask. He lives in New York City. Jason Fletcher is Professor of Public Affairs, Sociology, Agricultural and Applied Economics, and Population Health Sciences at the University of Wisconsin–Madison. He lives in Madison. They are the authors of The Genome Factor: What the Social Genomics Revolution Reveals about Ourselves, Our History, and the Future.

Oswald Schmitz on “new ecology”: How does humankind fit in with nature?

Schmitz Ecology has traditionally been viewed as a science devoted to studying nature apart from humans. But humankind is singlehandedly transforming the entire planet to suit its own needs, causing ecologists to think differently about the relationship between humans and nature. The New Ecology: Rethinking a Science for the Anthropocence by Oswald Schmitz provides a concise and accessible introduction to what this “new ecology” is all about. The book offers scientific understanding of the crucial role humans are playing in this global transition, explaining how we can ensure that nature has the enduring capacity to provide the functions and services on which our existence and economic well-being critically depend. Recently, Schmitz took some time to answer a few questions about his new book.


The term Anthropocene is cropping up a lot nowadays in discussions about the environment. What does this term refer to?

OS: The Anthropocene essentially means the Age of Humans. Science has characterized the history of the Earth in terms of major events that have either shaped its geological formations or have given rise to certain dominant life forms that have shaped the world. For example, the Mesozoic is known as the Age of the Dinosaurs, the Cenozoic includes the Age of Flowering Plants, Age of Insects, Age of Mammals and Birds. The Anthropocene characterizes our modern times because humans have become the dominant life form shaping the world.

You’ve written several books about ecology. What’s different about this one?

OS: My goal is to communicate the exciting scientific developments and insights of ecology to a broad readership. I hope to inspire readers to think more deeply about humankind’s role as part of nature, not separate from it, and consider the bigger picture implications of humankind’s values and choices for the sustainability of Earth. As such, the intended audience is altogether different than my previous books. My previous books were technical science books written specifically for ecologists or aspiring ecologists.

What inspired you to write this particular book?

OS: The ecological scientific community has done a great job of conducting its science and reporting on it in the scientific literature. That literature is growing by leaps and bounds, describing all manner of fascinating discoveries. The problem is, all that knowledge is not being widely conveyed to the broader public, whose tax dollars are supporting much of that research and who should be the ultimate beneficiaries of the research. Writing this book is my way of explaining to the broader public the incredible value of its investment in ecological research. I wrote it to explain how the scientific findings can help make a difference to people’s livelihoods, and health and well-being.

What is the main take-home message?

OS: I’d like readers to come away appreciating that ecological science offers considerable means and know-how to help solve many of the major environmental problems facing humankind now and into the future. It aims to dispel the notion, often held in society, that ecology is simply a science in support of environmental activism against human progress, one that simply decries human impacts on the Earth. This book instead offers a positive, hopeful outlook, that with humility and thoughtful stewardship of Earth, humans can productively engage with nature in sustainable ways for the mutual benefit of all species—humans included—on Earth.

Oswald Schmitz is the Oastler Professor of Population and Community Ecology in the School of Forestry and Environmental Studies at Yale University. His other works include Resolving Ecosystem Complexity (Princeton). His most recent book is The New Ecology: Rethinking a Science for the Anthropocence.

Peter Dougherty & Al Bertrand: On Being Einstein’s Publisher

by Peter Dougherty and Al Bertrand

So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest. (Albert Einstein to Robert A Thornton, 7 December 1944, EA 61-574)

For all of the scholarly influences that have defined Princeton University Press over its 111-year history, no single personality has shaped the Press’s identity as powerfully, both directly and indirectly, as Albert Einstein. The 2015 centenary of the publication of Einstein’s “Theory of General Relativity” as well as the affirmation this past February and again in June of the discovery of gravitational waves has encouraged us to reflect on this legacy and how it has informed our identity as a publisher.

The bright light cast by Einstein the scientist and by Einstein the humanist has shaped Princeton University Press in profound and far-reaching ways. It expresses itself in the Press’s standard of scholarly excellence, its emphasis on the breadth and connectedness of liberal learning across all fields, and in our mission of framing scholarly arguments to shape contemporary knowledge. All the while, Einstein’s role as a citizen of the world inspires our vision to be a truly global university press.

PUBLISHING EINSTEIN: A BRIEF HISTORY

Albert Einstein is not only Princeton University Press’s most illustrious author; he was our first best-selling author. Following his public lectures in Princeton in 1921, the Press—itself less than 20 years old at the time—published the text of those lectures, titled “The Meaning of Relativity”, in 1922. Publication followed the agitated exhortation of the Press’s then-manager, Frank Tomlinson, urging Professor Einstein to get his manuscript finished. Tomlinson wrote:

My dear Professor Einstein—

On July 6 I wrote you inquiring when we might expect to receive the manuscript of your lectures. I have had no reply to this letter. A number of people have been inquiring when the book will be ready, and we are considerably alarmed at the long delay in the receipt of your manuscript, which we were led to believe would be in our hands within a month after the lectures were delivered. The importance of the book will undoubtedly be seriously affected unless we are able to publish it within a reasonable time and I strongly urge upon you the necessity of sending us the copy at your earliest convenience. I should appreciate also the favor of a reply from you stating when we may expect to receive it.

the meaning of relativity jacketMr. Tomlinson’s letter marks something of a high point in the history of publishers’ anxiety, but far from failing, The Meaning of Relativity was a hit. It would go on to numerous successive editions, and remains very much alive today as both a print and digital book, as well as in numerous translated editions.

For all its glorious publishing history, The Meaning of Relativity can be thought of as a mere appetizer to the bounteous publishing banquet embodied in THE COLLECTED PAPERS OF ALBERT EINSTEIN, surely PUP’s most ambitious continuing publication and one of the most important editorial projects in all of scholarly publishing.

The Collected Papers of Albert Einstein

Authorized by the Einstein Estate and the PUP Board of Trustees in 1970, and supported by a generous grant from the late Harold W. McGraw, Jr., chairman of the McGraw-Hill Book Company, THE EINSTEIN PAPERS, as it evolves, is providing the first complete and authoritative account of a written legacy that ranges from Einstein’s work on the special and general theories of relativity and the origins of quantum theory, to expressions of his profound concern with civil liberties, education, Zionism, pacifism, and disarmament.

einstein old letterAn old saying has it that “good things come to those to wait,” words that ring resoundingly true regarding the EINSTEIN PAPERS. Having survived multiple obstacles in the long journey from its inception through the publication of its first volume in 1987, the Einstein Papers Project hit its stride in 2000 when Princeton University Press engaged Professor Diana Buchwald as its sixth editor, and moved the Project to Pasadena with the generous support of its new host institution, the California Institute of Technology.

Since then, Professor Buchwald and her Caltech-based editorial team, along with their international network of scholarly editors, have produced successive documentary and English translation volumes at the rate of one every eighteen months. To give you an idea of just how impressive a pace this is, the Galileo papers are still a work in progress, nearly four centuries after his death.

The EINSTEIN PAPERS, having reached and documented Einstein’s writings up to 1925, has fundamentally altered our understanding of the history of physics and of the development of general relativity, for example by destroying the myth of Einstein as a lone genius and revealing the extent to which this man, with his great gift for friendship and collegiality, was embedded in a network of extraordinary scientists in Zurich, Prague, and Berlin.

Along with the EINSTEIN PAPERS, the Press has grown a lively publishing program of books drawn from his work and about Einstein. Satellite projects include The Ultimate Quotable Einstein, as well as volumes on Einstein’s politics, his love letters, and the “miraculous year” of 1905.

Last year the Press published two new books drawn from Einstein’s writings, The Road to Relativity, and the 100th anniversary edition of Relativity: The Special and General Theory, both volumes edited by Jürgen Renn of the Max Planck Institute in Berlin, and Hanoch Gutfreund of the Hebrew University in Jerusalem.   These volumes celebrate the centenary of Einstein’s publication of the theory of general relativity in November 1915.

In this same centenary year, PUP published several other Einstein titles, including:

— Volume 14 of the Collected Papers, The Berlin Years, 1923-1925.

An Einstein Encyclopedia, edited by Alice Calaprice, Daniel Kennefick, and Robert Schulman;

Einstein: A Hundred Years of Relativity, by Andrew Robinson

Especially notable, in January 2015 the Press released THE DIGITAL EDITION OF THE COLLECTED PAPERS OF ALBERT EINSTEIN, a publishing event that has attracted extraordinary worldwide attention, scientific as well as public. This online edition is freely available to readers and researchers around the world, and represents the historic collaboration between the Press and its partners, the Einstein Papers Project at Caltech and the Albert Einstein Archive in the Hebrew University in Jerusalem.

Moreover, works by and about Einstein sit at the crossroads of two major components of the Princeton list: our science publishing program which comprises a host of fields from physics through mathematics, biology, earth science, computer science, and natural history, and our history of science program which connects PUP’s Einstein output to our humanities publishing, helping to bridge the intellectual gap between two major dimensions of our list.

Einstein’s dual legacy at Princeton University Press thus serves to bookend the conversation defined by the Press’s unusually wide-ranging array of works across and throughout the arts and sciences, from mathematics to poetry. C.P. Snow famously described the sciences and the humanities as “two cultures.” Einstein’s legacy informs our effort as a publisher to create an ongoing correspondence between those two cultures in the form of books, which uniquely serve to synthesize, connect, and nurture cross-disciplinary discourse.

EINSTEIN’S LARGER PUBLISHING INFLUENCE

Much as the living legacy of the EINSTEIN PAPERS and its related publications means to Princeton University Press as a publisher, it holds a broader meaning for us both as editors and as leaders of the institution with which we’ve long been affiliated.

Like most of our colleagues, we arrived at the Press as editors previously employed by other publishers, and having little professional interest in physics. Each of us specialized in different editorial fields, economics and classics, respectively.

Our initial disposition towards the field of physics, while full of awe, was perhaps best summed up by Woody Allen when he said: “I’m astounded by people who want to ‘know’ the universe when it’s hard enough to find your way around Chinatown.”  

But we soon discovered, as newcomers to PUP inevitably do, that the Princeton publishing legacy of Albert Einstein carried with it a set of implications beyond his specific scientific bounty that would help to shape our publishing activity, as well as that of our colleagues. We see the Einstein legacy operating in three distinct ways on PUP’s culture:

First, it reinforces the centrality of excellence as a standard: simply put, we strive to publish the core scholarly books by leading authors, senior as well as first-time. Einstein’s legacy stands as a giant-sized symbol of excellence, an invisible but constant reminder that our challenge as publishers at Princeton is not merely to be good, but to be great. As we seek greatness by publishing those books that help to define and unite the frontiers of modern scholarship, and connect our authors’ ideas with minds everywhere, we are upholding a standard embodied in the work of Albert Einstein.

The second implication of the bounty Albert Einstein is a commitment to seeing liberal knowledge defined broadly, encompassing its scientific articulation as well as its expression in the humanities and social sciences. PUP purposefully publishes an unusually wide portfolio of subject areas, encompassing not only standard university press fields such as literary criticism, art history, politics, sociology, and philosophy, but a full complement of technical fields, including biology, physics, neuroscience, mathematics, economics, and computer science. A rival publisher once half-jokingly described PUP as “the empirical knowledge capital of the world.” She was referring to our capacious cultivation of scientific and humanistic publishing, an ambitious menu for a publisher producing only around 250 books a year, but one we think gives the Press its distinctive identity.

It is no coincidence that Albert Einstein, PUP’s most celebrated author, cast his influence across many of these fields both as a scientist and as a humanist, engaged fully in the life of the mind and of the world. His legacy thus inspires us to concentrate our editorial energies on building a list that focuses on knowledge in its broadest and deepest sense—that puts into play the sometimes contentious, and even seemingly incongruous, methodologies of science and the humanities and articulates a broad yet rigorous, intellectual vision, elevating knowledge for its own sake, even as the issues change from decade to decade.

A third implication appears in Einstein’s challenge to us to be a great global publisher. Einstein, a self-professed “citizen of the world” was in many ways the first global citizen, a scholar whose scientific achievement and fame played out on a truly global scale in an age of parochial and often violent nationalist thinking.

Einstein’s cosmopolitanism has inspired the Press to pursue a path of becoming a truly global university Press. To do this, PUP has built lists in fields that are cosmopolitan in their readership, opened offices in Europe and China, expanded its author and reviewer base all over the world, and has licensed its content for translation in many languages. As we go forward, we intend to continue to build a network that allows us to connect many local publishing and academic cultures with the global scholarly conversation. This vision of the Press’s future echoes Einstein’s call for a science that transcends national boundaries.

THE FUTURE

It has been nearly a century since publication of The Meaning of Relativity and half that since the original agreement for the EINSTEIN PAPERS was authorized. We can only imagine that the originators of the latter project would be proud of what our collective effort has produced, grateful to the principals for the job they have done in bringing the PAPERS to their current status, and maybe above all, awed by the global exposure the PAPERS have achieved in their print and now digital formats.

As we continue our work with our colleagues at Caltech and the Hebrew University to extend the EINSTEIN PAPERS into the future, we are reminded of the significance of the great scientist’s legacy, especially as it bears on our identity as a global publisher, framing the pursuit of knowledge imaginatively across the arts and sciences.

The eminent Italian publisher Roberto Calasso, in his recent book, The Art of the Publisher, encourages readers to imagine a publishing house as,

“a single text formed not just by the totality of books that have been published there, but also by its other constituent elements, such as the front covers, cover flaps, publicity, the quantity of copies printed and sold, or the different editions in which the same text has been presented. Imagine a publishing house in this way and you will find yourself immersed in a very strange landscape, something that you might regard as a literary work in itself, belonging to a genre all its own.”

Now, at a time when the very definition of publishing is being undermined by technological and economic forces, it is striking to see each publisher as a “literary work unto itself.” So it is with Princeton University Press. In so far as PUP can claim a list having a diversified but well-integrated publishing vision, one that constantly strives for excellence and that stresses the forest for the trees, it is inescapably about the spirit and substance reflected in the legacy of Albert Einstein, and it is inseparable from it.

Einstein_blog (small)

 


 

Peter J. Dougherty is Director of Princeton University Press. This essay is based in part on comments he delivered at the Space-Time Theories conference at the Hebrew University in Jerusalem in January, 2015. Al Bertrand is Associate Publishing Director of Princeton University Press and Executive Editor of the Press’s history of science publishing program, including Einstein-related publications.

The companion website to Welcome to the Universe launches today

Welcome to the UniverseWe’re thrilled to launch this beautiful companion website to the highly anticipated new book, Welcome to the Universe by Neil DeGrasse Tyson, Michael Strauss, and Richard Gott.

If you’ve ever wondered about the universe and our place in it, then this elegant mini-tour of the cosmos is for you. Divided into three parts called ‘Stars, Planets and Life,’ ‘Galaxies,’ and ‘Einstein and the Universe,’ the site is designed to take you on a journey through the major ideas in Welcome to the Universe. We hope you learn something new and exciting about outer space. If you find something interesting and would like to share, please do! The site is set up to make sharing interesting tidbits on social media easy. Want to learn more? The site also includes information on where to learn more about each topic. Keep an eye out for the book in October 2016.

 

Welcome to the Universe: An Astrophysical Tour by Neil deGrasse Tyson, Michael A. Strauss & J. Richard Gott from Princeton University Press on Vimeo.