**by Tim Chartier**

The Global Math Project has a goal of sharing the joys of mathematics to 1 million students around the world from October 10th through the 17th. As we watch the ever-increasing number of lives that will share in math’s wonders, let’s talk about counting, which is fundamental to reaching this goal.

Let’s count. Suppose we have five objects, like the plus signs below. We easily enough count five of them.

You could put them in a hat and mix them up.

If you take them out, they might be jumbled but you’d still have five.

Easy enough! Jumbling can induce subtle complexities, even to something as basic as counting.

Counting to 14 isn’t much more complicated than counting to five. Be careful as it depends what you are counting and how you jumble things! Verify there are 14 of Empire State Buildings in the picture below.

If you cut out the image along the straight black lines, you will have three pieces to a puzzle. If you interchange the left and right pieces on the top row, then you get the configuration below. How many buildings do you count now? Look at the puzzle carefully and see if you can determine how your count changed.

Can you spot any changes in the buildings in the first versus the second pictures? How we pick up an additional image is more easily seen if we reorder the buildings. So, let’s take the 14 buildings and reorder them as seen below.

Swapping the pieces on the top row of the original puzzle has the same effect as shifting the top piece in the picture above. Such a shift creates the picture below. Notice how we pick up that additional building. Further, each image loses 1/14th of its total height.

Let’s look at the original puzzle before and after the swap.

This type of puzzle is called a Dissection Puzzle. Our eyes can play tricks on us. We know 14 doesn’t equal 15 so something else must be happening when a puzzle indicates that 14 = 15. Mathematics allows us to push through assumptions that can lead to illogical conclusions. Math can also take something that seems quite magical and turn it into something very logical — even something as fundamental as counting to 14.

Want to look at counting through another mathematical lens? A main topic of the Global Math Project will be exploding dots. Use a search engine to find videos of James Tanton introducing exploding dots. James is a main force behind the Global Math Project and quite simply oozes joy of mathematics. You’ll also find resources at the Global Math Project web page. Take the time to look through the Global Math Project resources and watch James explain exploding dots, as the topic can be suitable from elementary to high school levels. You’ll enjoy your time with James. You can count on it!

**Tim Chartier **is associate professor of mathematics at Davidson College. He is the coauthor of Numerical Methods and the author of Math Bytes: Google Bombs, Chocolate-Covered Pi, and Other Cool Bits in Computing.