Physics Today Q&A with Chris Quigg, Author of Gauge Theories of the Strong, Weak, and Electromagnetic Interactions

quigg2In the July 2014 edition of Physics Today, Princeton University Press author Chris Quigg sits down with Stephen Blau and Jermey Matthews to talk particle physics and gauge theories.

A member of the Theoretical Physics Department of the Fermi National Accelerator Laboratory, Mr. Quigg also received the American Physical Society’s 2011 J. J. Sakurai Prize for outstanding achievement in particle theory. His books include Gauge Theories of the Strong, Weak, and Electromagnetic Interactions (2013) and the 1993 edition of the Annual Review of Nuclear and Particle Science.

The following questions have been excerpted from Physics Today:

PT: What is your assessment of the current state of particle physics, including the quality and enthusiasm of current students? With the excitement over the Higgs and other advances, are you concerned that the field might be overhyped?

Quigg: It is an immensely exciting time. In common with many areas of physics and astronomy, particle physics has many challenging questions and the means to address them. Our students and postdocs are highly motivated, talented, and intensely curious. It’s a test for our institutions, including funding agencies, to create rewarding career paths for the young people drawn to science by the excitement of our work.

When I was hiking in Europe in the weeks before the Higgs discovery was announced, it seemed that everyone I met wanted to know what was happening [at the LHC] in Geneva. Sharing our explorations with the public is good for science and good for society.


“Sharing our explorations with the public is good for science and good for society.”


PT: What are the most exciting questions you see the particle-physics community answering in the short term, say within 10 years?

Quigg: I close the new edition of Gauge Theories with a list of 20 outstanding questions—many with multiple parts—and 1 great meta-question: How are we prisoners of conventional thinking?

Within 10 years we will certainly have a much more complete understanding of electroweak symmetry breaking and the character of the Higgs boson. The initial LHC results have shaken theorists out of a certain complacency; specifically, a lot of received wisdom about naturalness and supersymmetry is being reexamined. Searches for dark matter are reaching a decisive stage. Studies of processes that are highly suppressed in the standard model, such as lepton-flavor violation, flavor-changing neutral currents, and permanent electric dipole moments, will reach ever more interesting levels of sensitivity. A world with massive neutrinos poses questions about the nature of neutrino mixing, the existence of sterile neutrinos, and the character of the neutrino—is it a Dirac particle, a Majorana particle, or both? I suspect that we will find new phenomena in the strong interactions that teach us about the great richness of QCD.

Read the rest of this fascinating interview here

______________________________________________________________________________________________

Chris Quigg is the author of:

gauge Gauge Theories of the Strong, Weak, and Electromagnetic Interactions by Chris Quigg
Hardcover | 2013 | $75.00 / £52.00 | ISBN: 9780691135489
496 pp. | 7 x 10 | 150 line illus. 17 tables. | eBook | ISBN: 9781400848225 | Reviews   Table of Contents   Chapter 1[PDF]   Illustration Package 

Quick Questions for Charles D. Bailyn, author of What Does a Black Hole Look Like?

Charles BailynCharles D. Bailyn is the A. Bartlett Giamatti professor Astronomy and Physics at Yale University. He is currently serving as Dean of Faculty at Yale-NUS College in Singapore. He was awarded the 2009 Bruno Rossi Prize from the American Astronomical Society for his work on measuring the masses of black holes, and the recipient of several other, equally prestigious awards.

Dr. Bailyn received his B.Sc. in Astronomy and Physics from Yale (1981) and completed his Ph.D. in Astronomy at Harvard (1987). His research interests are concentrated in High Energy Astrophysics and Galactic Astronomy, with a focus on observations of binary star systems containing black holes. His latest book, What Does a Black Hole Look Like? addresses lingering questions about the nature of Dark Matter and black holes, and is accessible to a variety of audiences.

Now, on to the questions!

PUP: What inspired you to get into your field?

Charles D. Bailyn: Like a lot of little kids in the late 1960s, I was fascinated by space travel, and I wanted to be an astronaut. But then someone told me about space sickness – I’m prone to motion sickness, and that sounded pretty awful to me. So “astronaut” morphed into “astrophysicist” – I liked the idea of exploring the universe through math and physics. In college I thought I would work on relativity theory, but I didn’t quite have the mathematical prowess for that, and around that time I found out that the X-ray astronomers were actually observing black holes and related objects. So as a graduate student and post-doc I gradually moved from being a theorist to being an observer. I’ve analyzed data from many of NASA’s orbiting observatories, so I ended up being involved with the space program after all.

What would you have been if not an astronomer?

I’ve always loved music, particularly vocal music, and I’ve spent a lot of time in and around various kinds of amateur singing groups. I could easily see myself as a choral conductor.

What is the biggest misunderstanding that people have about astronomy?

Well, I’m always a bit amused and dismayed when I tell someone that I’m an astronomer, and they ask “what’s your sign?” – as if astronomy and astrology are the same thing. I used to tell people very seriously that I’m an Orion – this is puzzling, since most people know it’s a constellation but not part of the zodiac. At one point I had an elaborate fake explanation worked out about how this could be.

Why did you write this book? Who do you see as its audience?

There seem to be two kinds of books on black holes and relativity – books addressing a popular audience that use no math at all, and textbooks that focus on developing the relevant physical theory. This book was designed to sit in the middle. It assumes a basic knowledge of college physics, but instead of deriving the theory, its primary concerns are the observations and their interpretation. I’m basically talking to myself as a sophomore or junior in college.


“The unseen parts of the Universe are the most intriguing, at least to me.”


How did you come up with the title?

The Frontiers in Physics (Princeton) series like to have questions in the title, and this one is particularly provocative. Black holes by definition cannot be seen directly, so asking what they “look like” is a bit of an oxymoron. But a lot of modern astrophysics is like that – we have powerful empirical evidence for all sorts of things we can’t see, from planets around distant stars to the Dark Matter and Dark Energy that make up most of the stuff in the Universe. The unseen parts of the Universe are the most intriguing, at least to me.

What are you working on now?

I’m turning the online version of my introductory astronomy course into a book – kind of a retro move, turning online content into book format! It will be for a non-scientific rather than a scientific audience. But mostly I’m doing administrative work these days – I’m currently in Singapore serving as the inaugural Dean of Faculty for Yale-NUS College, the region’s first fully residential liberal arts college. The importance of science in a liberal arts curriculum is a passion of mine – after all, astronomy was one of the original liberal arts – and I’m glad to have a chance to bring this kind of education to a new audience, even though it takes me away from my scientific work for a while.

What are you reading right now?

I’ve been following the reading list for our second semester literature core class, starting from Don Quixote and Journey to the West, the first early modern novels in the European and Chinese traditions respectively, ending with Salman Rushdie, who is all about the interaction of East and West. It’s fun being a student again!

________________________________________________________________________________________________________________________________________________________

Charles D. Bailyn is the author of:

Buy the Book image What Does a Black Hole Look Like? by Charles D. Bailyn
Hardcover | August 2014 | $35.00 / £24.95 | ISBN: 9780691148823
224 pp. | 5 x 8 | 21 line illus.| eBook | ISBN: 9781400850563 | Reviews

A letter from Ingrid Gnerlich, Executive Editor of Physical and Earth Sciences

Photo on 2014-05-14Dear Readers:

As many of you will know, in November 2013, the remarkable astrophysicist, Dimitri Mihalas – a pioneering mind in computational astrophysics, and a world leader in the fields of radiation transport, radiation hydrodynamics, and astrophysical quantitative spectroscopy – passed away.  Though deeply saddened by this news, I also feel a unique sense of honor that, this year, I am able to announce the much-anticipated text, Theory of Stellar Atmospheres:  An Introduction to Astrophysical Non-equilibrium Quantitative Spectroscopic Analysis, co-authored by Ivan Hubeny and Dimitri Mihalas.  This book is the most recent publication in our Princeton Series in Astrophysics (David Spergel, advising editor), and it is a complete revision of Mihalas’s Stellar Atmospheres, first published in 1970 and considered by many to be the “bible” of the field.  This new edition serves to provide a state of the art synthesis of the theory and methods of the quantitative spectroscopic analysis of the observable outer layers of stars.  Designed to be self-contained, beginning upper-level undergraduate and graduate-level students will find it accessible, while advanced students, researchers, and professionals will also gain deeper insight from its pages.  I look forward to bringing this very special book to the attention of a wide readership of students and researchers.

It is also with profound excitement that I would like to announce the imminent publication of Kip Thorne and Roger Blandford’s Modern Classical Physics:  Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics.  This is a first-year, graduate-level introduction to the fundamental concepts and 21st-century applications of six major branches of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn’t.  Early readers have described the manuscript as “splendid,” “audacious,” and a “tour de force,” and I couldn’t agree more.  Stay tuned!

Lastly, it is a pleasure to announce a number of newly and vibrantly redesigned books in our popular-level series, the Princeton Science Library.  These include Richard Alley’s The Two-Mile Time Machine, which Elizabeth Kolbert has called a “fascinating” work that “will make you look at the world in a new way” (The Week), as well as G. Polya’s bestselling must-read, How to Solve It.  In addition, the classics by Einstein, The Meaning of Relativity, with an introduction by Brian Greene, and Feynman, QED, introduced by A. Zee, are certainly not to be missed.

Of course, these are just a few of the many new books on the Princeton list I hope you’ll explore.  My thanks to you all—readers, authors, and trusted advisors—for your enduring support. I hope that you enjoy our books and that you will continue to let me know what you would like to read in the future.

Ingrid Gnerlich
Executive Editor, Physical & Earth Sciences

Fantasy Physics: Should Einstein Have Won Seven Nobel Prizes?

This guest post from A. Douglas Stone is part of our celebration of all things Einstein, pi, and, of course, pie this week. For more articles, please click here. Please join Prof. Stone at the Princeton Public Library on March 14 at 6 PM for a lecture about Einstein’s quantum breakthroughs.

Cross-posted with the Huffington Post.

Thanks to RealClearScience for posting about this article!!


2014-03-12-Albert_Einstein_28Nobel291.pngAlbert Einstein never cared too much about receiving awards and honors, and that included the Nobel Prizes, which were established in 1901, at roughly the same time as Einstein was beginning his research career in physics. In 1905, at the age of 25, Einstein began his ascent to scientific pre-eminence and world-wide fame with his proposal of the Special Theory of Relativity, as well as a “revolutionary” paper on the particulate properties of light, his foundational work on molecular (“Brownian”) motion, and finally his famous equation, E = mc2. In 1910, he was first nominated for the Prize and was nominated many times subsequently, usually by multiple physicists, until he finally won the 1921 Prize (awarded in 1922). Surprisingly, he did not win for his most famous achievement, Relativity Theory, which was still deemed too speculative and uncertain to endorse with the Prize. Instead, he won for his 1905 proposal of the law of the photoelectric effect—empirically verified in the following decade by Robert Millikan—and for general “services to theoretical physics.” It was a political decision by the Nobel committee; Einstein was so renowned that their failure to select him had become an embarrassment to the Nobel institution. But this highly conservative organization could find no part of his brilliant portfolio that they either understood or trusted sufficiently to name specifically, except for this relatively minor implication of his 1905 paper on particles of light. The final irony in this selection was that, among the many controversial theories that Einstein had proposed in the previous seventeen years, the only one not accepted by almost all of the leading theoretical physicists of the time was precisely his theory of light quanta (or photons), which he had used to find the law of the photoelectric effect!

In keeping with his relative indifference to such honors, Einstein declined to attend the award ceremony, because he had previously committed to a lengthy trip to Japan at that time and didn’t feel it was fair to his hosts to cancel it. Moreover, when the Prize was officially announced and the news reached him during his long voyage to Japan, he neglected to even mention the Prize in the travel diary he was keeping. He had taken one practical note of it however, in advance. When he divorced his first wife, Mileva Maric in 1919, he agreed to transfer to her the full prize money, a substantial sum, in the form of a Trust for the benefit of her and his sons, should he eventually win.

However, while Einstein himself barely dwelt at all on this honor, it is an interesting exercise to ask how many distinct breakthroughs Einstein made during his productive research career, spanning primarily the years 1905 to 1925, that could be judged of Nobel caliber, when placed in historical context and evaluated by the standards of subsequent Nobel Prize awards. Admittedly, this analysis has a bit in common with fantasy sports, in which athletes are judged and ranked by their statistical achievements and arguments are made about who was the GOAT (“greatest of all time”). Well, why not spend a few pages on this guilty pleasure, at least partly in the service of illuminating the achievements of this historic genius, even if Einstein would not have approved?

Let’s start with the Prize he did receive, which was absolutely deserved, if the committee had had the courage to write the citation, “for his proposal of the existence of light quanta.” The law of the photoelectric effect, which they cited, only makes sense if light behaves like a particle in some important respects, and that is what he proposed in 1905. This proposal came at a time when the wave theory of light was absolutely triumphant and was even enshrined in a critical technology: radio. Not a single physicist in the world was thinking along similar lines as Einstein, nor were all of the important theorists convinced by his arguments for two more decades. Nonetheless, the photon concept was unambiguously confirmed in experiments by 1925, and now is considered the paradigm for our modern quantum theory of force-carrying particles. It is the first in a family of particles known as bosons, most recently augmented by the (Nobel-winning) discovery of the Higgs particle. So the photon is a Nobel slam dunk.

We can move next to two more “no-brainers,” the two theories of relativity, the Special Theory, proposed in 1905, and the General Theory, germinated in 1907 and completed in 1915. These are quite distinct contributions. The Special Theory introduced the Principle of Relativity, that the law of physics must all be the same for bodies in uniform relative motion. An amazing implication of this statement is that time does not elapse uniformly, independent of the motion of observers, but rather that the time interval between events depends on the state of relative motion of the observer. Einstein was the first to understand and explain this radical notion, which is now well-verified by direct experiments. Moreover, Einstein’s concept of “relativistic invariance” is built into our theory of the elementary particles, and so it has had a profound impact on fundamental physics. However, here it must be noted that the equations of Special Relativity were first written down by Hendrik Lorentz, the great Dutch physicist whom Einstein admired the most of all his contemporaries. Lorentz just failed to give them the radical interpretation with which Einstein endowed them; he also failed to notice that they implied that energy and mass were interchangeable: E = mc2. There are also a few votes out there for the French mathematician, Henri Poincare, who enunciated the Principle of Relativity before Einstein, but I can’t put him in the same category as Lorentz with regard to this debate. Einstein would have been happy to share Special Relativity with Lorentz, so let’s split this one 50-50 between the two.

General Relativity on the other hand is all Albert. Like the photon, no one on the planet even had an inkling of this idea before Einstein. Einstein realized that the question of the relativity of motion was tied up with the theory of Gravity: that uniform acceleration (e.g. in an elevator in empty space) was indistinguishable from the effect of gravity on the surface of a planet. It gave one the same sense of weight. From this simple seed of an idea arose arguably the most beautiful and mathematically profound theory in all of physics, Einstein’s Field Equations, which predict that matter curves space and that the geometry of our universe is non-Euclidean in general. The theory underlies modern cosmology and has been verified in great detail by multiple heroic and diverse experiments. The first big experiment, which measured the deflection of starlight as it passed by the sun during a total eclipse, is what made Einstein a worldwide celebrity. This one is probably worth two Nobel prizes, but let’s just mark it down for one.

Here we exhaust what most working physicists would immediately recognize as Einstein’s works of genius, and we’re only at 2.5 Nobels. But it is a remarkable fact that Einstein’s work on early atomic theory, what we now call quantum theory, is vastly under-rated. This is partially because Einstein himself downplayed it due to his rejection of the final version of the theory, which he dismissed with the famous phrase, “God does not play dice.” But if one looks at what he actually did, the Nobels keep piling up.

The modern theory of the atom, quantum theory, began in 1900 with the work of the German physicist, Max Planck, who, in what he called “an act of desperation,” introduced into physics a radical notion, quantization of energy. Or so the textbooks say. This is the idea that when energy is exchanged between atoms and radiation (e.g. light), it can only happen in discrete chunks, like a parking meter that only accepts quarters. This idea turns out to be central to modern atomic physics, but Planck didn’t really say this in his work. He said something much more provisional and ambiguous. It was Einstein in his 1905 paper—but then much more clearly in a follow-up paper on the vibrations of atoms in solids in 1907—who really stated the modern principle. It is not clear if Planck himself accepted it fully even a decade after his seminal work (although he was given credit for it by the Nobel Prize committee in 1918). In contrast, Einstein boldly applied it to the mechanical motion of atoms, even when they are not exchanging energy with radiation, and stated clearly the need for a quantized mechanics. So despite the textbooks, Einstein clearly should have shared Planck’s Nobel Prize for the principle of quantization of energy. We are up to 3.0 Nobels for Big Al.

The next one in line is rarely mentioned. After Einstein proposed his particulate theory of light in 1905, he did not adopt the view that light was simply made of particles in the ordinary sense of a localized chunk of matter, like a grain of sand. Instead, he was well aware that light interfered with itself in a similar manner to water waves (a peak can cancel a trough, leading to no wave). In 1909, he came up with a mathematical proof that the particle and wave properties were present in one formula that described the fluctuations of the intensity of light. Hence, he announced that the next era of theoretical physics would see a “fusion” of the particle and wave pictures into a unified theory. This is exactly what happened, but it took fourteen years for the next advance and another three (1926) for it all to fall into place. In 1923, the French physicist Louis de Broglie hypothesized that electrons, which have mass (unlike light) and were always previously conceived of as particles, actually had wavelike properties similar to light. He freely admitted his debt to Einstein for this idea, but when he got the Nobel Prize for “wave-particle” duality in 1929, it was not shared. But it should have been. Another half for Albert, at 3.5 and counting.

From 1911 to 1915 Einstein took a vacation from the quantum to invent General Relativity, which we have already counted, so his next big thing was in 1916 (he didn’t leave a lot of dead time in those days). That was three years after Niels Bohr introduced his “solar system” model of the atom, where the electrons could only travel in certain “allowed orbits” with quantized energy. Einstein went back to thinking about how atoms would absorb light, with the benefit of Bohr’s picture. He realized that once an atom had absorbed some light, it would eventually give that light energy back by a process called spontaneous emission. Without any particular event to cause it, the electron would jump down to a lower energy orbit, emitting a photon. This was the first time that it was proposed that the theory of atoms had such random, uncaused events, a notion that became a second pillar of quantum theory. In addition, he stated that sometimes there was causal emission, that the imposition of more light could cause the atom to release its absorbed light energy in a process called stimulated emission. Forty-four years later, physicists invented a device that uses this principle to produce the purest and most powerful light sources in nature, the LASER (Light Amplified by Stimulated Emission of Radiation). The principles of spontaneous and stimulated emission introduced by Einstein underlie the modern quantum theory of light. One full Prize please—now at 4.5.

After that 1916-1917 work, Einstein had some health problems and became involved in political and social issues for a while, leading to a Nobel batting slump for a few years. (He did still collect some hits, like the prediction of gravitational waves (a double) and the first paper on cosmology and the geometry of the Universe using General Relativity (a triple)). But he came out of his slump with a vengeance in 1924 when he received a paper out of the blue from an unknown Indian, physicist Satyendranath Bose. It was yet another paper about particles of light, and although Bose did not state his revolutionary idea very clearly, reading between the lines, Einstein detected a completely new principle of quantum theory, the idea that all fundamental particles are indistinguishable. This is the standard terminology in physics, but it is actually very misleading. Here, indistinguishability is not the idea that humans can’t tell two photons apart (like identical twins); it is the idea that Nature can’t tell them apart, and in a real sense interchanging the two photons doesn’t count as a different state of light.

When Bose applied this principle to light he didn’t get anything radically new; it was just a different way of thinking about Planck’s original discovery in 1900. But Einstein then took the principle and applied it to atoms for the very first time, with amazing results. He discovered that a simple gas of atoms, if cooled down sufficiently, would cease to obey all the laws that physicists and chemist had discovered for gases over the centuries, and to which no exception had ever been found. Instead, all gases should behave like a weird liquid or super-molecule known as a Bose-Einstein condensate. But remember, Bose had no clue this would happen; he didn’t even try to apply his principle to atoms. It turns out that Einstein condensation underlies some of the most dramatic quantum effects, such as superconductivity, which is needed to make the magnets in MRI machines and has been the basis for five Nobel Prizes. No knowledgeable physicist would dispute that Einstein deserved a full Nobel Prize for this discovery, but I am sure that Einstein would have wanted to share it with Bose (who never did receive the Prize).

So we are at 5.0 “units” of Nobel Prize but seven trips to Stockholm. And this leaves out other arguably Nobel-caliber achievements (Brownian motion as well as the Einstein-Podolsky-Rosen effect, which underlies modern quantum information physics). And wait a minute—when someone shares the Nobel Prize do we refer to them as a “half- Laureate”? No way. Even scientists who get a “measly” third of a Prize are Nobel Laureates for life. Thus by the standard we apply to normal humans, Einstein deserved at least seven Nobel Prizes. So next time you make your fantasy scientist draft, you know who to take at number one.


Stone_EinsteinQuantum_jktA. Douglas Stone is author of Einstein and the Quantum: The Quest of The Valiant Swabian.

Einstein’s Real Breakthrough: Quantum Theory

Thank you to Yale University for recording this fantastic interview between A. Douglas Stone and Ramamurti Shankar.

People may be surprised to hear that Einstein could well be the father of quantum theory in addition to the father of relativity. In part this is because Einstein ultimately rejected quantum theory, but also because there is very little published evidence of his work. However, as he researched his new book Einstein and the Quantum: The Quest of the Valiant Swabian, Stone discovered letters and correspondence with other scientists that demonstrate the extent of Einstein’s influence in this area.

If you would like to learn more about Einstein’s contributions to quantum theory, grab a copy of Einstein and the Quantum which you can sample here.

Interested in Einstein?

Einstein

EVENT

On Wednesday 29th January, A.Douglas Stone will be giving a talk at Blackwell’s Bookshop, Oxford, one of Britain’s best loved and most famous bookshops.

Einstein’s development of Quantum theory has not really been appreciated before. Now A.Douglas Stone reveals how he was actually one of the most important pioneers in the field.  Einstein himself famously rejected Quantum mechanics with his “God does not play dice” theory, yet he actually thought more about atoms and molecules than he did about relativity. Stone’s book ‘Einstein and the Quantum‘, which was published in November by Princeton University Press, outlines Einstein’s personal struggle with his Quantum findings as it went against his belief in science as something eternal and objective. Professor Stone will be happy to take questions and sign copies at the end of his talk.

Wednesday, January 29th at 19:00

Tickets cost £3 and are available from Blackwell’s Customer Service desk in the shop; by telephoning 01865 333623; by emailing events.oxford@blackwell.co.uk

 

William Bialek Wins the 2013 Swartz Prize

William Bialek, Winner of the 2013 Swartz Prize for Theoretical and Computational Neuroscience, Society for Neuroscience

The Society for Neuroscience (SfN) has awarded the Swartz Prize for Theoretical and Computational Neuroscience to William Bialek, PhD, of Princeton University. The $25,000 prize, supported by The Swartz Foundation, recognizes an individual who has produced a significant cumulative contribution to theoretical models or computational methods in neuroscience. The award was presented during Neuroscience 2013, SfN’s annual meeting and the world’s largest source of emerging news about brain science and health.

To read the full press release about the award, click here.

BiophysicsWilliam Bialek is the John Archibald Wheeler/Battelle Professor in Physics at Princeton University, where he is also a member of the multidisciplinary Lewis-Sigler Institute for Integrative Genomics, and is Visiting Presidential Professor of Physics at the Graduate Center of the City University of New York. He is the coauthor of Spikes: Exploring the Neural Code and the author of Biophysics: Searching for Principles.

Featuring numerous problems and exercises throughout, Biophysics emphasizes the unifying power of abstract physical principles to motivate new and novel experiments on biological systems.

  • Covers a range of biological phenomena from the physicist’s perspective
  • Features 200 problems
  • Draws on statistical mechanics, quantum mechanics, and related mathematical concepts
  • Includes an annotated bibliography and detailed appendixes
  • Forthcoming Instructor’s manual (available only to professors)

World Space Week Round-Up #WSW2013

All this week for World Space Week, we’ve been posting excerpts from Chris Impey and Holly Henry’s new book, Dreams of Other Worlds: The Amazing Story of Unmanned Space Exploration, and while that’s an amazing book, we decided that in order to give World Space Week all of the cosmic attention it deserves, we would put together an interstellar round-up to fire up your engines and blast you to infinity… and beyond!

Beyond UFOs
Beyond UFOs: The Search for Extraterrestrial Life and Its Astonishing Implications for Our Future

By: Jeffrey Bennett

This book describes the startling discoveries being made in the very real science of astrobiology, an intriguing new field that blends astronomy, biology, and geology to explore the possibility of life on other planets. This book goes beyond UFOs to discuss some of the tantalizing questions astrobiologists grapple with every day: What is life and how does it begin? What makes a planet or moon habitable? Is there life on Mars or elsewhere in the solar system? How can life be recognized on distant worlds? Is it likely to be microbial, more biologically complex–or even intelligent? What would such a discovery mean for life here on Earth?

Titan Unveiled
Titan Unveiled: Saturn’s Mysterious Moon Explored

By: Ralph Lorenz and Jacqueline Mitton

In the early 1980s, when the two Voyager spacecraft skimmed past Titan, Saturn’s largest moon, they transmitted back enticing images of a mysterious world concealed in a seemingly impenetrable orange haze. Titan Unveiled is one of the first general interest books to reveal the startling new discoveries that have been made since the arrival of the Cassini-Huygens mission to Saturn and Titan.

From Dust To Life
From Dust to Life: The Origin and Evolution of Our Solar System

By: John Chambers & Jacqueline Mitton

The birth and evolution of our solar system is a tantalizing mystery that may one day provide answers to the question of human origins. This book tells the remarkable story of how the celestial objects that make up the solar system arose from common beginnings billions of years ago, and how scientists and philosophers have sought to unravel this mystery down through the centuries, piecing together the clues that enabled them to deduce the solar system’s layout, its age, and the most likely way it formed.

Fly Me to the Moon
Fly Me to the Moon: An Insider’s Guide to the New Science of Space Travel

By: Edward Belbruno
With a foreword by Neil deGrasse Tyson

Belbruno devised one of the most exciting concepts now being used in space flight, that of swinging through the cosmos on the subtle fluctuations of the planets’ gravitational pulls. His idea was met with skepticism until 1991, when he used it to get a stray Japanese satellite back on course to the Moon. The successful rescue represented the first application of chaos to space travel and ushered in an emerging new field. Part memoir, part scientific adventure story, Fly Me to the Moon gives a gripping insider’s account of that mission and of Belbruno’s personal struggles with the science establishment.

The Milky Way
The Milky Way: An Insider’s Guide

By: William H. Waller

This book offers an intimate guide to the Milky Way, taking readers on a grand tour of our home Galaxy’s structure, genesis, and evolution, based on the latest astronomical findings. In engaging language, it tells how the Milky Way congealed from blobs of gas and dark matter into a spinning starry abode brimming with diverse planetary systems–some of which may be hosting myriad life forms and perhaps even other technologically communicative species. It vividly describes the Milky Way as it appears in the night sky, acquainting readers with its key components and telling the history of our changing galactic perceptions.

Universe
The Universe in a Mirror: The Saga of the Hubble Space Telescope and the Visionaries Who Built It

By: Robert Zimmerman
With a new afterword by the author

The Hubble Space Telescope has produced the most stunning images of the cosmos humanity has ever seen. It has transformed our understanding of the universe around us, revealing new information about its age and evolution, the life cycle of stars, and the very existence of black holes, among other startling discoveries. But it took an amazing amount of work and perseverance to get the first space telescope up and running. The Universe in a Mirror tells the story of this telescope and the visionaries responsible for its extraordinary accomplishments.

Think you know all about missions in space? Take our quiz and find out!
Proud of your score? Tweet it! #WSW2013

“Dreams of Other Worlds”: Chandra and HST #WSW2013

Houston, we have lift off!

All week long for World Space Week, we will be posting exclusive excerpts from Chris Impey and Holly Henry’s new book, Dreams of Other Worlds: The Amazing Story of Unmanned Space Exploration. Each day will include an excerpt from a different chapter(s) about a different unmanned spacecraft, along with a picture of the craft that doubles as an iPhone background!

Today we have two excerpts. The first is from Chapter 10, and it describes some of the leaps and bounds we have been able to make in black hole exploration thanks to Chandra. The second excerpt is from Chapter 11, which talks about what is probably the most famous spacecraft, the Hubble Space Telescope.

Tomorrow will bring another chapter and another adventure, so stay tuned!

chandra99-13Chandra has the sensitivity to detect stellar black holes hundreds of light-years away. Only about twenty binary systems have well-enough measured masses to be sure the dark companion is a black hole, but X-ray observations can be used to identify black holes with fairly high reliability. The examples studied with X-ray telescopes are the brightest representatives of a population of about 100 million black holes in the Milky Way.
X-ray observations have also pushed the limit of our understanding of black holes. In 2007, a research team used Chandra to discover a black hole in M33, a nearby spiral galaxy. The black hole was sixteen times the mass of the Sun, making it the most massive stellar black hole known.32 Moreover, it was in a binary orbit with a huge star seventy times the Sun’s mass. The formation mechanism of the black hole that placed it in such a tight embrace with its companion is unknown. This is the first black hole in a binary system that shows eclipses, which provides unusually accurate measurements of mass and other properties. The massive companion will also die as a black hole, so future astronomers will be able to gaze on a binary black hole where energy is lost as gravitational radiation and the two black holes dance a death spiral as they coalesce into a single beast.
hubble89-13Above all scientific projects, the Hubble Space Telescope encapsulates and recapitulates the human yearning to explore distant worlds, and understand our origins and place in the universe. Its light grasp is 10 billion times better than Galileo’s best spyglass, and many innovations were needed for it to be realized: complex yet reliable instruments, the ability for astronauts to service the telescope, and the infrastructure to support the projects of thousands of scientists from around the world. The facility and its supporters experienced failure and heartache as well as eventual success and vindication.
Hubble’s legacy has touched every area of astronomy, from the Solar System to the most distant galaxies. In the public eye, it’s so well known that many people think it’s the only world-class astronomy facility. In fact, it operates in a highly competitive landscape with other space facilities and much larger telescopes on the ground. Although it doesn’t own any field of astronomy, it has made major contributions to all of them. It has contributed to Solar System astronomy and the characterization of exoplanets, it has viewed star birth and death in unprecedented detail, it has paid homage to its namesake with spectacular images of galaxies near and far, and it has cemented important quantities in cosmology, including the size, age, and expansion rate of the universe.

Think you know all about these missions? Take our quiz and find out!
Proud of your score? Tweet it! #WSW2013

“Dreams of Other Worlds”: Hipparcos and Spitzer #WSW2013

Houston, we have lift off!

All week long for World Space Week, we will be posting exclusive excerpts from Chris Impey and Holly Henry’s new book, Dreams of Other Worlds: The Amazing Story of Unmanned Space Exploration. Each day will include an excerpt from a different chapter(s) about a different unmanned spacecraft, along with a picture of the craft that doubles as an iPhone background!

Today we have two excerpts. The first is from Chapter 8, which talks about the first star charts, which were created by the Greek astronomer, Hipparchus (for whom the Hipparcos was named). The second excerpt is from Chapter 9, explaining some of the adversities Spitzer had to face before it was able to go into space.

Tomorrow will bring another chapter and another adventure, so stay tuned!

HipparcosFor thousands of years, all we’ve known of Hipparchus’s star guide were descriptions by Ptolemy. But astronomer Bradley Schaefer asserts that, indeed, the Farnese Atlas, a statue of the Greek figure Atlas kneeling while holding on his shoulders a globe of constellations, represents the stars and constellations known to the ancient Greeks. He contends that the statue “is the oldest surviving depiction of the set of the original Western constellations, and as such can be a valuable resource for studying their early development.”18 Schaefer realized after a detailed study of the globe that the constellations depicted match the night sky in the era and from the location where Hipparchus lived in 129 BC. As evidence in favor of this possibility, Schaefer writes: “First, the constellation symbols and relations are identical with those of Hipparchus and are greatly different from all other known ancient sources. Second, the date of the original observations is 125 ± 55 BC, a range that includes the date of Hipparchus’s star catalogue (c. 129 BC) but excludes the dates of other known plausible sources.” Schaefer concludes that “the ultimate source of the position information [of the constellations on the globe] used by the original Greek sculptor was Hipparchus’s data.”

SpitzerSpitzer, from its earliest inception, was especially designed for infrared astronomy and is sensitive enough to detect infrared signatures of stars and galaxies billions of light-years away. The space telescope has been instrumental in unveiling small, dim objects like dwarf stars and exoplanets and can even determine the temperature of their slender atmospheres. Originally proposed in the late 1970s as NASA’s Space Infrared Telescope Facility, the Spitzer Space Telescope suffered from uncertainty, a delay after the loss of the space shuttle Challenger, near-cancellation, congressional limbo, budget cuts, and “descoping.” Nevertheless, in 2003 the telescope was finally launched, after being renamed subsequent to a public opinion poll conducted by NASA. The last of NASA’s four Great Observatories, the $800 million telescope was named after Lyman Spitzer, an early advocate of the importance of orbital telescopes.13 After launch, the spacecraft took about 40 days to cool to its operating temperature of 5 Kelvin. Once cooled, it took just an ounce of liquid helium per day to maintain its detectors at their operating temperature. A solar panel facing the Sun serves to gather power and protect the telescope from radiation.

Think you know all about these missions? Take our quiz and find out!
Proud of your score? Tweet it! #WSW2013

William H. Waller Brings the Stars to The Huffington Post

William H. WallerWilliam H. Waller, astronomist and author of The Milky Way: An Insider’s Guide, recently wrote an article that was picked up by The Huffington Post for their blog. Based on this bio page that was also posted for Waller on HuffPost, we’re hoping this means he will be writing regularly about science and the stars, especially with some of the amazing pictures included in the article.


The post, which focuses on our ability to visibly see the Milky Way with all of the light pollution in the air, starts by saying:

The Milky Way“For most of human history, the night sky demanded our attention. The shape-shifting Moon, wandering planets, pointillist stars, and occasional comet enchanted our sensibilities while inspiring diverse tales of origin. The Milky Way, in particular, exerted a powerful presence on our distant ancestors. Rippling across the firmament, this irregular band of ghostly light evoked myriad myths of life and death among the stars. In 1609, Galileo Galilei pointed his telescope heavenward and discovered that the Milky Way is “nothing but a congeries of innumerable stars grouped together in clusters.” Fast forward 400 years to the present day, and we find that the Milky Way has all but disappeared from our collective consciousness. Where did it go?”

To read the rest of the article on The Huffington Post, click here.


This book offers an intimate guide to the Milky Way, taking readers on a grand tour of our home Galaxy’s structure, genesis, and evolution, based on the latest astronomical findings. In engaging language, it tells how the Milky Way congealed from blobs of gas and dark matter into a spinning starry abode brimming with diverse planetary systems–some of which may be hosting myriad life forms and perhaps even other technologically communicative species.

Waller makes the case that our very existence is inextricably linked to the Galaxy that spawned us. Through this book, readers can become well-informed galactic “insiders”–ready to imagine humanity’s next steps as fully engaged citizens of the Milky Way.

William H. Waller is an astronomer, science educator, and writer. He lives with his family in Rockport, Massachusetts, where he can still see the Milky Way on dark moonless nights.

Q&A with Douglas Stone, Author of “Einstein and the Quantum”

Einstein and the QuantumA. Douglas Stone is the Carl A. Morse Professor of Applied Physics and Physics at Yale University. His book, Einstein and the Quantum: The Quest of the Valiant Swabian, reveals for the first time the full significance of Albert Einstein’s contributions to quantum theory. Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light–the core of what we now know as quantum theory–than he did about relativity.

In a recent interview, A. Douglas Stone talked about Einstein’s contributions to the scientific community, quantum theory, and his new book, Einstein and the Quantum: The Quest of the Valiant Swabian.



Why does quantum theory matter?
At the beginning of the 20th century science was facing a fundamental roadblock: scientists did not understand the laws governing the atoms and molecules of which all materials are made, but which are unobservable due to their size.

At that time there was a real question whether the human mind was capable of understanding this microscopic realm, outside of all our direct experience of the world.  The development and success of quantum theory was a turning point for modern civilization, enabling most of the scientific advances and revolutionary technologies of the century that followed.

What are some of the ways that quantum theory has changed our lives?
There is a common misconception that quantum mechanics is mainly about very weird phenomena, remote from everyday life, such as Schrodinger’s cat, exotic sub-atomic particles, black holes, or the Big Bang.  Actually it is a precise quantitative tool to understand the materials, chemical reactions and devices we employ in modern industries, such as semiconductors, solar cells, and lasers.  An early success of the quantum theory was to help predict how to extract ammonia from the air, which could then be used as fertilizer for the green revolution that revolutionized 20th century agriculture. And of course our ability to develop both nuclear weapons and nuclear power was completely dependent upon quantum theory.

Why is Einstein’s role in quantum theory important and interesting?
It is important because a careful examination of the historical record shows that Einstein was responsible for more of the fundamental new concepts of the theory than any other single scientist.  This is arguably his greatest scientific legacy, despite his fame for Relativity Theory.  He himself said, “I have thought a hundred times more about the quantum problems than I have about Relativity Theory”. It is interesting because he ultimately refused to accept quantum theory as the ultimate truth about Nature, because it violated his core philosophical principles.

So you are saying that Einstein is famous for the wrong theory?
In a certain sense, yes.  All physicists agree that the theory of relativity, particularly general relativity, is a work of staggering individual genius.  But in terms of impact on human society and history, quantum mechanics is simply much more important.  In fact, relativity theory is incorporated into important parts of modern quantum mechanics, but in many contexts it is irrelevant.

In what ways was Einstein central to the development of the theory?
I estimate that his contributions to quantum theory would have been worthy of four Nobel Prizes if different scientists had done them, compared to the one that he received. I go through each of these contributions in its historical and biographical context in the book.

Can you give a few examples?
Quantum theory gets its name because it says that certain physical quantities, including the energies of electrons bound to atomic nuclei are quantized, meaning that only certain energies are allowed, whereas in macroscopic physics energy is a continuously varying quantity.  Typically the German physicist, Max Planck, is credited with the insight that energy must be quantized at the molecular scale, but the detailed history shows Einstein role in this conceptual breakthrough was greater.
Another key thing in quantum theory is that fundamental particles, while they move in space, sometimes behave as if they were spread out, like a wave in water, but in other contexts they appear as particles, i.e. very localized point-like objects.  Einstein introduced this “wave-particle duality” first, in 1905 (his “miracle year”), when he proposed that light, long thought to be an electromagnetic wave, also could behave like a particle, now known as the photon.
Yet another, very unusual concept in quantum theory is that fundamental particles, such as photons, are “indistinguishable” in a technical sense.  When many photons are bunched together it makes no sense to ask which is which.  This changes their physical properties in a very important way, and this insight is often attributed to the Indian physicist, S. N. Bose (hence the term “boson”).  In my view Einstein played a larger role in this advance than did Bose, although he always very generously gave Bose a great deal of credit.
The stories of these and other findings are fully told in the book and they illustrate new aspects of Einstein’s genius, unknown to the public and even to many working scientists.

What did Einstein object to about quantum theory?
Initially he reacted strongly against the intrinsic randomness and uncertainty of quantum mechanics, saying “God does not play dice”.  But after that his main objection was that quantum theory seems to break down the distinction between the subjective world of human experience and the objective description of physical reality that he considered the goal of physics, and his central mission in life. Many physicists struggle with this issue even today.

Why is Einstein’s role in quantum theory underappreciated?
Einstein ultimately rejected the theory and moved on to other areas of research, so he never emphasized the extent of his contributions.  His own autobiographical notes, written in his seventies, understate his role to an almost laughable degree. Second, Einstein’s version of quantum theory, wave mechanics, did not create a school of followers, whereas Niels Bohr, Werner Heisenberg and others reached the same point be a different route. Their school fostered the primary research thrust in atomic and nuclear physics, gradually causing the memory of Einstein’s role to fade.  Finally, the history of Einstein’s involvement with quantum theory was long (1905-1925) and complex, and few people really understand it all; I try to remedy that in this book.

Did Einstein do anything important in quantum physics after the basic theory was known?
No and yes.  He did not work in the main stream of elementary particle physics which developed shortly after the basic theory was discovered in the late nineteen twenties, since he refused to employ the standard mathematical machinery of quantum theory which everyone else used.  However, in the early 1930’s he identified a conceptual feature of quantum theory missed by all the other pioneers, which became known by the term “entanglement”. This concept, ironically, is critical to the most revolutionary area of modern quantum physics, quantum information theory and quantum computing.

What does the subtitle of the book refer to? Who is the “Valiant Swabian”?
The Valiant Swabian was a fictional crusader knight, the hero of a poem by Ludwig Uhland, a poet from Swabia where Einstein was born. In his twenties, Einstein used to refer to himself jokingly by this name, particularly with his first wife, Mileva Maric.  It was a similar to someone today calling himself “Indiana Jones” for fun.  The young Einstein was a charismatic and memorable personality, with great joie de vivre, as this nickname indicates.  He was known for his sense of humor, his rebelliousness, and for his attractiveness to women, in contrast to the benevolent, grandfatherly, star-gazer we associate with iconic pictures of the white-maned sage of later years.

How did you research this book? What materials did you have access to?
There is a very extensive trove of letters and private papers that survive in Einstein’s estate, all of which have been translated and published for the period 1886 to 1922.  From reading all of these I got a good sense of his personality.  And all of his important scientific papers in the relevant time period are available in English now, so I was able to go back and see exactly how he arrived at his revolutionary ideas about quantum theory, which I then did my best to interpret in layman’s terms. In addition I relied on several excellent biographies by Folsing, Isaacson and Pais, and historical articles by many leading historians of science, such as T.S. Kuhn and Martin Klein.

What do you hope readers take away from reading Einstein and the Quantum?
First, new insight into Einstein’s genius, and a sense of the personality of the young Einstein, before his fame. Second, appreciation of the historic significance of the successful attempt to understand the atom through quantum theory, a turning point in human civilization. Third, an understanding of how science advances as a creative, human process, with both brilliant insights and embarrassing blunders, affected by psychological and philosophical influences.