Peter Dougherty & Al Bertrand: On Being Einstein’s Publisher

by Peter Dougherty and Al Bertrand

So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest. (Albert Einstein to Robert A Thornton, 7 December 1944, EA 61-574)

For all of the scholarly influences that have defined Princeton University Press over its 111-year history, no single personality has shaped the Press’s identity as powerfully, both directly and indirectly, as Albert Einstein. The 2015 centenary of the publication of Einstein’s “Theory of General Relativity” as well as the affirmation this past February and again in June of the discovery of gravitational waves has encouraged us to reflect on this legacy and how it has informed our identity as a publisher.

The bright light cast by Einstein the scientist and by Einstein the humanist has shaped Princeton University Press in profound and far-reaching ways. It expresses itself in the Press’s standard of scholarly excellence, its emphasis on the breadth and connectedness of liberal learning across all fields, and in our mission of framing scholarly arguments to shape contemporary knowledge. All the while, Einstein’s role as a citizen of the world inspires our vision to be a truly global university press.


Albert Einstein is not only Princeton University Press’s most illustrious author; he was our first best-selling author. Following his public lectures in Princeton in 1921, the Press—itself less than 20 years old at the time—published the text of those lectures, titled “The Meaning of Relativity”, in 1922. Publication followed the agitated exhortation of the Press’s then-manager, Frank Tomlinson, urging Professor Einstein to get his manuscript finished. Tomlinson wrote:

My dear Professor Einstein—

On July 6 I wrote you inquiring when we might expect to receive the manuscript of your lectures. I have had no reply to this letter. A number of people have been inquiring when the book will be ready, and we are considerably alarmed at the long delay in the receipt of your manuscript, which we were led to believe would be in our hands within a month after the lectures were delivered. The importance of the book will undoubtedly be seriously affected unless we are able to publish it within a reasonable time and I strongly urge upon you the necessity of sending us the copy at your earliest convenience. I should appreciate also the favor of a reply from you stating when we may expect to receive it.

the meaning of relativity jacketMr. Tomlinson’s letter marks something of a high point in the history of publishers’ anxiety, but far from failing, The Meaning of Relativity was a hit. It would go on to numerous successive editions, and remains very much alive today as both a print and digital book, as well as in numerous translated editions.

For all its glorious publishing history, The Meaning of Relativity can be thought of as a mere appetizer to the bounteous publishing banquet embodied in THE COLLECTED PAPERS OF ALBERT EINSTEIN, surely PUP’s most ambitious continuing publication and one of the most important editorial projects in all of scholarly publishing.

The Collected Papers of Albert Einstein

Authorized by the Einstein Estate and the PUP Board of Trustees in 1970, and supported by a generous grant from the late Harold W. McGraw, Jr., chairman of the McGraw-Hill Book Company, THE EINSTEIN PAPERS, as it evolves, is providing the first complete and authoritative account of a written legacy that ranges from Einstein’s work on the special and general theories of relativity and the origins of quantum theory, to expressions of his profound concern with civil liberties, education, Zionism, pacifism, and disarmament.

einstein old letterAn old saying has it that “good things come to those to wait,” words that ring resoundingly true regarding the EINSTEIN PAPERS. Having survived multiple obstacles in the long journey from its inception through the publication of its first volume in 1987, the Einstein Papers Project hit its stride in 2000 when Princeton University Press engaged Professor Diana Buchwald as its sixth editor, and moved the Project to Pasadena with the generous support of its new host institution, the California Institute of Technology.

Since then, Professor Buchwald and her Caltech-based editorial team, along with their international network of scholarly editors, have produced successive documentary and English translation volumes at the rate of one every eighteen months. To give you an idea of just how impressive a pace this is, the Galileo papers are still a work in progress, nearly four centuries after his death.

The EINSTEIN PAPERS, having reached and documented Einstein’s writings up to 1925, has fundamentally altered our understanding of the history of physics and of the development of general relativity, for example by destroying the myth of Einstein as a lone genius and revealing the extent to which this man, with his great gift for friendship and collegiality, was embedded in a network of extraordinary scientists in Zurich, Prague, and Berlin.

Along with the EINSTEIN PAPERS, the Press has grown a lively publishing program of books drawn from his work and about Einstein. Satellite projects include The Ultimate Quotable Einstein, as well as volumes on Einstein’s politics, his love letters, and the “miraculous year” of 1905.

Last year the Press published two new books drawn from Einstein’s writings, The Road to Relativity, and the 100th anniversary edition of Relativity: The Special and General Theory, both volumes edited by Jürgen Renn of the Max Planck Institute in Berlin, and Hanoch Gutfreund of the Hebrew University in Jerusalem.   These volumes celebrate the centenary of Einstein’s publication of the theory of general relativity in November 1915.

In this same centenary year, PUP published several other Einstein titles, including:

— Volume 14 of the Collected Papers, The Berlin Years, 1923-1925.

An Einstein Encyclopedia, edited by Alice Calaprice, Daniel Kennefick, and Robert Schulman;

Einstein: A Hundred Years of Relativity, by Andrew Robinson

Especially notable, in January 2015 the Press released THE DIGITAL EDITION OF THE COLLECTED PAPERS OF ALBERT EINSTEIN, a publishing event that has attracted extraordinary worldwide attention, scientific as well as public. This online edition is freely available to readers and researchers around the world, and represents the historic collaboration between the Press and its partners, the Einstein Papers Project at Caltech and the Albert Einstein Archive in the Hebrew University in Jerusalem.

Moreover, works by and about Einstein sit at the crossroads of two major components of the Princeton list: our science publishing program which comprises a host of fields from physics through mathematics, biology, earth science, computer science, and natural history, and our history of science program which connects PUP’s Einstein output to our humanities publishing, helping to bridge the intellectual gap between two major dimensions of our list.

Einstein’s dual legacy at Princeton University Press thus serves to bookend the conversation defined by the Press’s unusually wide-ranging array of works across and throughout the arts and sciences, from mathematics to poetry. C.P. Snow famously described the sciences and the humanities as “two cultures.” Einstein’s legacy informs our effort as a publisher to create an ongoing correspondence between those two cultures in the form of books, which uniquely serve to synthesize, connect, and nurture cross-disciplinary discourse.


Much as the living legacy of the EINSTEIN PAPERS and its related publications means to Princeton University Press as a publisher, it holds a broader meaning for us both as editors and as leaders of the institution with which we’ve long been affiliated.

Like most of our colleagues, we arrived at the Press as editors previously employed by other publishers, and having little professional interest in physics. Each of us specialized in different editorial fields, economics and classics, respectively.

Our initial disposition towards the field of physics, while full of awe, was perhaps best summed up by Woody Allen when he said: “I’m astounded by people who want to ‘know’ the universe when it’s hard enough to find your way around Chinatown.”  

But we soon discovered, as newcomers to PUP inevitably do, that the Princeton publishing legacy of Albert Einstein carried with it a set of implications beyond his specific scientific bounty that would help to shape our publishing activity, as well as that of our colleagues. We see the Einstein legacy operating in three distinct ways on PUP’s culture:

First, it reinforces the centrality of excellence as a standard: simply put, we strive to publish the core scholarly books by leading authors, senior as well as first-time. Einstein’s legacy stands as a giant-sized symbol of excellence, an invisible but constant reminder that our challenge as publishers at Princeton is not merely to be good, but to be great. As we seek greatness by publishing those books that help to define and unite the frontiers of modern scholarship, and connect our authors’ ideas with minds everywhere, we are upholding a standard embodied in the work of Albert Einstein.

The second implication of the bounty Albert Einstein is a commitment to seeing liberal knowledge defined broadly, encompassing its scientific articulation as well as its expression in the humanities and social sciences. PUP purposefully publishes an unusually wide portfolio of subject areas, encompassing not only standard university press fields such as literary criticism, art history, politics, sociology, and philosophy, but a full complement of technical fields, including biology, physics, neuroscience, mathematics, economics, and computer science. A rival publisher once half-jokingly described PUP as “the empirical knowledge capital of the world.” She was referring to our capacious cultivation of scientific and humanistic publishing, an ambitious menu for a publisher producing only around 250 books a year, but one we think gives the Press its distinctive identity.

It is no coincidence that Albert Einstein, PUP’s most celebrated author, cast his influence across many of these fields both as a scientist and as a humanist, engaged fully in the life of the mind and of the world. His legacy thus inspires us to concentrate our editorial energies on building a list that focuses on knowledge in its broadest and deepest sense—that puts into play the sometimes contentious, and even seemingly incongruous, methodologies of science and the humanities and articulates a broad yet rigorous, intellectual vision, elevating knowledge for its own sake, even as the issues change from decade to decade.

A third implication appears in Einstein’s challenge to us to be a great global publisher. Einstein, a self-professed “citizen of the world” was in many ways the first global citizen, a scholar whose scientific achievement and fame played out on a truly global scale in an age of parochial and often violent nationalist thinking.

Einstein’s cosmopolitanism has inspired the Press to pursue a path of becoming a truly global university Press. To do this, PUP has built lists in fields that are cosmopolitan in their readership, opened offices in Europe and China, expanded its author and reviewer base all over the world, and has licensed its content for translation in many languages. As we go forward, we intend to continue to build a network that allows us to connect many local publishing and academic cultures with the global scholarly conversation. This vision of the Press’s future echoes Einstein’s call for a science that transcends national boundaries.


It has been nearly a century since publication of The Meaning of Relativity and half that since the original agreement for the EINSTEIN PAPERS was authorized. We can only imagine that the originators of the latter project would be proud of what our collective effort has produced, grateful to the principals for the job they have done in bringing the PAPERS to their current status, and maybe above all, awed by the global exposure the PAPERS have achieved in their print and now digital formats.

As we continue our work with our colleagues at Caltech and the Hebrew University to extend the EINSTEIN PAPERS into the future, we are reminded of the significance of the great scientist’s legacy, especially as it bears on our identity as a global publisher, framing the pursuit of knowledge imaginatively across the arts and sciences.

The eminent Italian publisher Roberto Calasso, in his recent book, The Art of the Publisher, encourages readers to imagine a publishing house as,

“a single text formed not just by the totality of books that have been published there, but also by its other constituent elements, such as the front covers, cover flaps, publicity, the quantity of copies printed and sold, or the different editions in which the same text has been presented. Imagine a publishing house in this way and you will find yourself immersed in a very strange landscape, something that you might regard as a literary work in itself, belonging to a genre all its own.”

Now, at a time when the very definition of publishing is being undermined by technological and economic forces, it is striking to see each publisher as a “literary work unto itself.” So it is with Princeton University Press. In so far as PUP can claim a list having a diversified but well-integrated publishing vision, one that constantly strives for excellence and that stresses the forest for the trees, it is inescapably about the spirit and substance reflected in the legacy of Albert Einstein, and it is inseparable from it.

Einstein_blog (small)



Peter J. Dougherty is Director of Princeton University Press. This essay is based in part on comments he delivered at the Space-Time Theories conference at the Hebrew University in Jerusalem in January, 2015. Al Bertrand is Associate Publishing Director of Princeton University Press and Executive Editor of the Press’s history of science publishing program, including Einstein-related publications.

The companion website to Welcome to the Universe launches today

Welcome to the UniverseWe’re thrilled to launch this beautiful companion website to the highly anticipated new book, Welcome to the Universe by Neil DeGrasse Tyson, Michael Strauss, and Richard Gott.

If you’ve ever wondered about the universe and our place in it, then this elegant mini-tour of the cosmos is for you. Divided into three parts called ‘Stars, Planets and Life,’ ‘Galaxies,’ and ‘Einstein and the Universe,’ the site is designed to take you on a journey through the major ideas in Welcome to the Universe. We hope you learn something new and exciting about outer space. If you find something interesting and would like to share, please do! The site is set up to make sharing interesting tidbits on social media easy. Want to learn more? The site also includes information on where to learn more about each topic. Keep an eye out for the book in October 2016.


Welcome to the Universe: An Astrophysical Tour by Neil deGrasse Tyson, Michael A. Strauss & J. Richard Gott from Princeton University Press on Vimeo.

5 Fascinating Physics Facts

NahinPaul J. Nahin shows that physics is all around us in his new book, In Praise of Simple Physics. Nahin takes the reader step by step through a variety of everyday examples, proving that you don’t need an advanced degree to appreciate the math behind a speeding car, a falling object, or the rotation of the planets. For instance:

1. The Sun’s gravitational force upon Earth is 180 times larger than the Moon’s gravitational force upon Earth (p. 45), but lunar tides are larger than solar tides because the Sun is so much further away than the Moon (p. 48).

2. Saturn’s rings are believed to have been caused by tidal forces due to gravitational variation. Long ago, a moon of Saturn got too close to the planet and was pulled apart—the fragments make up the rings (p. 49).

3. Gravity and centripetal acceleration caused by the Moon create two tidal bulges on Earth—one directly below the Moon and the other on the far side of the Earth opposite the first bulge. The Moon’s gravitational pull on the two tidal bulges produces a net counter-rotational torque that tends to reduce the Earth’s rotational speed. The result is that the length of a day on Earth is continually increasing by about 2 milliseconds per century. Assuming that this rate of increase has been in effect for the last 2,000 years, then the day Julius Caesar was assassinated in 44BC was shorter in duration, compared to yesterday, by about 40 milliseconds (p. 53).

4. Physics can be funny! What do you get when you cross a mosquito with a mountain climber? A biologist would say, “nothing, because that’s impossible to do,” and a mathematician would be able to prove why. In vector mathematics there are two different ways to multiply two vectors together: the dot product (which produces a scalar result), and the cross product (which produces another vector). Each starts with two vectors. While a mosquito is, in fact, a vector of disease, a mountain climber is a scalar and you cannot cross a vector with a scalar (p. 66).

5. The center of mass is the point at which we can imagine the entire mass of the object is concentrated as a point mass. If you stack books on top of each other with each staggered exactly halfway across the one beneath it (at the center of mass) and off the edge of the table, the stack will not fall (p. 97).

If any of these facts have you scratching your head and you want to know more, pick up a copy of In Praise of Simple Physics for detailed explanations of the math behind each of these—and many more!

If you would like updates of new titles in math or physics, subscribe to our newsletter.

Stephen Heard: Write like a scientist

the scientist's guide to writing heardScientific writing should be as clear and impactful as other styles, but the process of producing such writing has its own unique challenges. Stephen Heard, scientist, graduate advisor, and editor speaks from personal experience in his book The Scientist’s Guide to Writing: How to Write More Easily and Effectively Throughout Your Scientific Career. Heard’s focus on the writing process emphasizes the pursuit of clarity, and his tips on submissions, coauthorship, citations, and peer reviews are crucial for those starting to seek publication. Recently, Heard agreed to answer a few questions about his book.

What made you decide to write a book about scientific writing?

SH: I think the first spark was when I realized I give the same writing advice to all my students, over and over, and caught myself thinking it would be easier to just write it all down once. That was foolish, of course: writing the book wasn’t easy at all! But before long, my rationale shifted. The book became less about stuff I wanted to tell everyone else, and more about stuff I wished somebody had told me. A lot of us get into science without much writing experience, and without thinking much about how important a role scientific writing plays – and when we start doing it, we discover that doing it well isn’t easy. It took me many years to become a reasonably competent scientific writer, and the book includes a lot of the things I discovered along the way. I was surprised to discover that writing the book made me a better writer. I think reading it can help too.

Surely there a bunch of other scientific-writing books out there? What do you do differently?

SH: Yes – and some of them are quite good! But I wanted to write something different. I’m not sure my book says anything that no one else knows about outlining or paragraph structure or citation formatting (for example). But I thought there was a lot of value in a book that pays attention to the writer as much as the writing: to the way writers behave as they write, and to ways in which some deliberate and scientific attention to our behavior might help us write faster and better. I’ve also discovered that knowing a bit about the history and culture of scientific writing can help us understand the way we write (and why). Just as one example: knowing something about the history of the Methods section, and how it’s changed over the last 350 years as scientists have struggled with the question of how scientific studies gain authority, can help us decide how to write our own Methods sections. I also tackle the question of whether there’s a place in scientific writing for beauty or for humor – something that gets discussed so rarely that it seems almost like a taboo.

Finally, I wanted to write a book that was really engaging: to show that thinking about writing (as we all need to) needn’t be dry and pedantic. So readers might be surprised, in a book about scientific writing, to find mentions of Voltaire’s lover, SpongeBob SquarePants, and the etymology of the word fart. But I hope they’ll also find that there are lessons in all those things – and more – for scientists who want to write better and more quickly.

You also go into a lot of depth about the review and publication process. Why are these things important to cover alongside the writing process?

SH: Well, maybe that isn’t “writing”, strictly speaking – but it’s an essential part of getting one’s scientific writing in the hands of readers. All of us want our scientific writing to be read, and to be cited, and to help move our fields forward. So it’s not enough to write a good manuscript; we have to be able to shepherd it through the process of submission, review, revision, and eventual acceptance. Early in my own career I found this process especially mysterious. Since then, I’ve learned a lot about it – by publishing quite a few papers myself, but also by reviewing hundreds of manuscripts and acting as an Associate Editor for hundreds more. So I have a pretty good overview of the publishing process, from both the writer’s and the journal’s perspective. There’s no particular reason that process has to be mysterious, and I thought it would be helpful to draw back the curtain.

Is scientific writing really that different from other kinds of writing?

SH: Both yes and no! Of course, there are technical issues that matter in scientific writing, like ways of handling text dense with numbers, or ways we handle citations. There are also more cultural ways in which scientific writing is its own thing. One of them is that we’ve developed a writing form that efficiently conveys material to other people who are familiar with that form. Our conventional division of papers into Abstract, Introduction, Methods, Results, and Discussion is a piece of that. Our writing (and our publication process) have evolved in many other ways that aren’t quite the same as you’d find in the humanities, or in writing about science for the public. That’s why there are books about scientific writing, not just about writing. But on another level, good scientific writing is like most other good writing: clear, concise, engaging whenever possible, and did I mention clear? Nothing is more important than clarity! As a result of this similarity, people who learn good scientific writing are well positioned for any career that involves writing – which is to say, pretty much any career.

Do you think of yourself as a good writer?

SH: No! And to loop back to the first question, that’s a big part of why I wrote the book. There are a very few natural writers out there – geniuses – for whom good writing just seems to come naturally. But these are rare. I’m like nearly everyone else: writing is hard work for me. It’s a craft I’ve learned over the years by practicing, by thinking deliberately about how I do it, and by reading advice from books that have gone before mine. It’s still hard work, but that’s OK: I’m willing to put in the effort for my writing product to seem pretty good, even if my writing process is laborious. If I’d understood earlier in my career that most writers are just like me, I would have been less crushed by the discovery that my papers didn’t just write themselves! Every scientific writer can do what I’ve done: practice the craft and improve at it. I hope my book can help.

Stephen B. Heard is professor of biology at the University of New Brunswick in Canada and associate editor of the journal American Naturalist. His most recent book is The Scientist’s Guide to Writing: How to Write More Easily and Effectively Throughout Your Scientific Career.

Happy Birthday, Albert Einstein!

What a year. Einstein may have famously called his own birthday a natural disaster, but between the discovery of gravitational waves in February and the 100th anniversary of the general theory of relativity this past November, it’s been a big year for the renowned physicist and former Princeton resident. Throughout the day, PUP’s design blog will be celebrating with featured posts on our Einstein books and the stories behind them.

HappyBirthdayEinstein Graphic 3

Here are some of our favorite Einstein blog posts from the past year:

Was Einstein the First to Discover General Relativity? by Daniel Kennefick

Under the Spell of Relativity by Katherine Freese

Einstein: A Missionary of Science by Jürgen Renn

Me, Myself and Einstein by Jimena Canales

The Revelation of Relativity by Hanoch Gutfreund

A Mere Philosopher by Eoghan Barry

The Final Days of Albert Einstein by Debra Liese


Gravitational waves making waves at Princeton

Today marks a new era in cosmology, astronomy, and astrophysics. The main page of the Einstein Papers Project website reports, “Gravitational waves do exist, as has been announced today with great joy by the scientists of the LIGO collaboration, after more than two decades of intensive experimental work.”

The cosmic breakthrough, which proves Einstein’s 100 year old prediction, has resulted in a tremendous response across the scientific community and social media. Scientific websites everywhere are already debating the meaning of the discovery, the #EinsteinWasRight hashtag has been bantered about on Twitter; You Tube featured a live announcement with over 80,000 people tuning in to watch (check it out at 27 minutes).



Princeton University Press authors Jeremiah Ostriker and Kip Thorne had a bet about gravitational wave detection in the 80s. Today when we contacted him, Ostriker, author of Heart of Darkness, was ebullient:

“The LIGO announcement today and the accompanying papers are totally persuasive. We all believed that Einstein had to be right in predicting gravitational waves, but to see them, so clean and so clear is marvelous. Two independent instruments saw the same signal from the same event, and it was just what had been predicted for the in-spiral and merger of two massive black holes.

A quarter of a century ago I had a bet with Kip Thorne that we would not see gravitational waves before the year 2000 – and I won that bet and a case of wine. But I did not doubt that, when the sensitivity of the instruments improved enough, gravitational waves would be found.  Now the skill and perseverance of the experimentalists and the support of NSF has paid off.

Hats off to all!!!”

But was Einstein always a believer in gravitational waves? Daniel Kennefick, co-author of The Einstein Encyclopedia says no:

“One hundred years ago in February 1916, Einstein mentioned gravitational waves for the first time in writing. Ironically it was to say that they did not exist. He said this in a letter to his colleague Karl Schwarzschild, who had just discovered the solution to Einstein’s equations which we now know describe black holes. Today brings a major confirmation of the existence both of gravitational waves and black holes. Yet Einstein was repeatedly skeptical about whether either of these ideas were really predictions of his theory. In the case of gravitational waves he soon changed his mind in 1916 and by 1918 had presented the first theory of these waves which still underpins our understanding of how the LIGO detectors work. But in 1936 he changed his mind again, submitting a paper to the Physical Review called “Do Gravitational Waves Exist?” in which he answered his own question in the negative. The editor of the journal responded by sending Einstein a critical referee’s report and Einstein angrily withdrew the paper and resubmitted it elsewhere. But by early the next year he had changed his mind again, completely revising the paper to present one of the first exact solutions for gravitational waves in his theory. So his relationship with gravitational waves was very far from the image of the cocksure, self-confident theorist which dominates so many stories about Einstein. Because of this, he would have been thrilled today, if he were still alive, to have this major confirmation of some of the most esoteric predictions of his theory.”

Here at Princeton University Press where we recently celebrated the 100th anniversary of Einstein’s theory of general relativity, the mood has been celebratory to say the least. If you’d like to read the Einstein Papers volumes that refer to his theory of gravitational waves, check out Document 32 in Volume 6, and Volume 7, which focuses on the theory. Or, kick off your own #EinsteinWasRight celebration by checking out some of our other relevant titles.

Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves
by Daniel Kennefick


Relativity: The Special and the General Theory, 100th Anniversary Edition
by Albert Einstein

relativity 100 years

The Meaning of Relativity: Including the Relativistic Theory of the Non-Symmetric Field
by Albert Einstein


Einstein Gravity in a Nutshell
by A. Zee


The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity” Featuring the Original Manuscript of Einstein’s Masterpiece
by Hanoch Gutfreund & Jürgen Renn.

The Road to Relativity

The Curious History of Relativity: How Einstein’s Theory of Gravity Was Lost and Found Again
by Jean Eisenstaedt

the curious history of relativity jacket

 An Einstein Encyclopedia
by Alice Calaprice, Daniel Kennfick, & Robert Sculmann


Gravitation and Inertia
by Ignazio Ciufolini & John Archibald Wheeler

gravity and inertia jacket

Einstein’s Jury: The Race to Test Relativity
by Jeffrey Crelinsten

einstein's jury jacket

What Does a Black Hole Look Like?
by Charles D. Bailyn

black hole

Dynamics and Evolution of Galactic Nuclei
by David Merritt

dynamics and evolution of galactic nuclei

The Global Nonlinear Stability of the Minkowski Space (PMS-41)
by Demetrios Christodoulou & Sergiu Klainerman

the global nonlinear stability of the minkowski space

Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics
by Kip S. Thorne & Roger D. Blandford

modern classical physics

The Collected Papers of Albert Einstein, Volume 7: The Berling Years: Writings, 1918-1921
by Albert Einstein

albert einstein

Carl Wunsch: Has oceanography grown too distanced from the ocean?

Wunsch jacketWith the advent of computers, novel instruments, satellite technology, and increasingly powerful modeling tools, we have vast knowledge about the ocean. Yet because of technological advances, a new generation of oceanographers have grown increasingly distanced from the object of their study. Physics Today recently published a Q&A with Carl Wunch, author of Modern Observational Physical Oceanography: Understanding the Global Ocean. According to Wunch, the field of oceanography cannot rely on theoretical truths alone. In this interview, he emphasizes the importance of the discipline’s observational roots:

Before Modern Observational Physical Oceanography: Understanding the Global Ocean (Princeton University Press, 2015) was published, Carl Wunsch had already made “an immense contribution” to the field, writes Stuart Cunningham in his January 2016 review of the book for Physics Today. Cunningham counts more than 250 papers and “an astonishing list of master’s and PhD students whose own merits are widely recognized.”

Modern Observational Physical Oceanography is Wunsch’s fifth book. Cunningham writes that it will be “of value to anyone wishing to know more about how to observe the ocean, interpret the data, and gain insights on ocean behavior and on how oceanographers reach their understanding of it.”

Carl Wunsch

Carl Wunsch

Wunsch was the Cecil and Ida Green Professor of Physical Oceanography at MIT before his retirement in 2013; he is now a visiting professor at Harvard University. He received his PhD at MIT under the tutelage of renowned oceanographer Henry Stommel. Among other things, Wunsch has studied the effects of ocean circulation on climate.

Physics Today recently caught up with Wunsch to discuss Modern Observational Physical Oceanography and his views on climate change issues.

PT: What motivated you to take up this book after retiring from MIT?

WUNSCH: In talking to students and postdocs, and in teaching, it became clear that we are in an era increasingly dominated by modelers and theoreticians, for many of whom observations are something downloaded from the Web and then taken as a “truth.” The field of physical oceanography and its climate components has become ever more remote from its observational roots.

In the past 25 years physical oceanography developed a number of highly useful, up-to-date, but theoretically based textbooks. There was no book known to me to which one could direct a colleague or student that emphasized the interesting complexities of the very diverse data types oceanographers now have available. The beautiful theories emphasized by the existing textbooks can produce the misperception of a laminar, essentially steady, ocean and in the extreme case, one reduced to a “conveyor belt.”

Read the full interview in Physics Today, here.

New Physics & Astrophysics Catalog

We invite you to browse our Physics & Astrophysics 2016 catalog:


Interacademy Partnership Check out Doing Global Science, an introductory guide to responsible science in our globalized society. Written by a committee of leading scientists from all over the world, this text is required reading for anyone involved in scientific inquiry.
Thorne Modern Classical Physics is a graduate-level text and reference book for first-year students that covers statistical physics, optics, elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology.

A. Zee has contributed another new title to our In a Nutshell series entitled Group Theory in a Nutshell for Physicists. He takes all the nuts and bolts of a mathematical subject and makes it accessible for physicists. PUP is also publishing the second edition of Astrophysics in a Nutshell by Dan Maoz this season, a work that has become a standard text in courses on astrophysics.

If you would like updates of new titles emailed to you, subscribe to our newsletter.

Finally, PUP will be at the American Physical Society March Meeting in Baltimore from March 14 to March 18.

The Digital Einstein Papers: An Open Access Story

EinsteinA year ago in December, Princeton University Press rolled out an unprecedented open access initiative: the ongoing publication of Einstein’s massive written legacy comprising more than 30,000 unique documents. The Digital Einstein Papers, one of the most ambitious publishing projects ever undertaken, launched to widespread fanfare from the scientific, publishing, and tech communities, with enthusiastic coverage from The New York Times, (which hailed the papers as “the Dead Sea Scrolls of Physics”), to Inside Higher Ed, The Guardian, and far beyond. You can watch Diana Buchwald, editor of The Collected Papers of Albert Einstein, launch The Digital Einstein here.

A year out, what has the success looked like in terms of traffic? Ken Reed, Digital Production Manager at Princeton University Press takes us behind the scenes:

The Digital Einstein Papers site launched on 5 December 2014, and in the past year has had over 340,000 sessions, with over 3.2 million pageviews.

Site traffic has been worldwide, with the top five countries in order being the United States, Germany, India, Canada, and Brazil. The site is mobile optimized, especially for the iOS, which accounts for 50% of mobile traffic to the site. This is vital for global users, since by some accounts the mobile share of web traffic is now at 33% globally.

The Papers features advanced search technology and allows users to easily navigate between the original languages in which the texts were written and their English translation, as well as extensive supplementary material. But the Press is always looking to make technological improvements. In the past year, Princeton University Press has worked closely with the developer, Tizra, to monitor traffic and continually tweak display issues, especially around mobile devices. We have recently added a news tab, and the future will hold more enhancements to the site, including added functionality for the search results, and the addition of a chronological sort.

At present, the site presents 13 volumes published by the editors of the Einstein Papers Project, with a 14th slated to go online in 2016. Here is just a sampling of the included documents:

“My Projects for the Future” — In this high school French essay, a seventeen-year-old Einstein describes his future plans, writing that “young people especially like to contemplate bold projects.”

Einstein’s first job offer — Einstein graduated from university in 1900, but had great difficulty finding academic employment. He received this notice of his appointment as a technical clerk at the Swiss Patent Office in June 1902 and would later describe his time there as happy and productive.

“On the Electrodynamics of Moving Bodies” — Einstein’s 1905 paper on the special theory of relativity is a landmark in the development of modern physics.

Keep an eye on this exciting open access project as it evolves in 2016 and beyond. Explore for yourself here.

Andrew Robinson to talk on “Einstein in Oxford” at Christ Church

In late 1915, in Berlin, Albert Einstein announced the general theory of relativity: his greatest achievement. In 1931-33, he lectured on relativity in Oxford, receiving an honorary degree from the university and staying in rooms in Christ Church, before fleeing his home in Nazi Germany and settling in Princeton. How much is known about Einstein’s time in the city of dreaming spires? For the centenary of general relativity, Einstein biographer Andrew Robinson will give a talk on “Einstein in Oxford” at Christ Church, Oxford on December 3. Robinson, the author of Einstein: A Hundred Years of Relativity, will reflect on relativity, Einstein’s intriguing relationship with Oxford and the puzzle of his universal fame. 

Ahead of his talk, Robinson shares some fascinating details about the historic visit:

Einstein in Oxford

By Andrew Robinson

My father was a physicist at Oxford’s Clarendon Laboratory for more than four decades, revered Einstein’s work and wrote a textbook on relativity. I was born, brought up and largely educated in Oxford. So I am naturally curious about Einstein’s relationship with the city.

When Einstein paid his first visit to England in 1921, The Times carried a two-sentence news item headlined “Professor Einstein at Oxford”. It read as follows: “Professor Einstein paid a private visit to Oxford University as the guest of Dr. Lindemann of Wadham College. A tour was made of the principal University buildings and the Professor returned to London in the evening.”

Einstein receiving an honorary degree at Oxford. Source:

Nothing further came of this Oxford visit for a decade. But the name of Einstein’s host in Oxford in 1921, the physicist Frederick Lindemann, proved to be very important. Though born in Germany in 1886, Lindemann was actually brought up in Britain and regarded himself as British. But he returned to Germany as a PhD student in Berlin. In 1911, when his Berlin supervisor, the future Nobel laureate Walther Nernst, organized a key scientific conference in Brussels—the first Solvay Congress—Nernst appointed his student Lindemann as one of the scientific secretaries of the conference. And it was at this historic conference—where the young Einstein lectured on quantum theory—that Lindemann first met him.

In 1919, Lindemann was elected Dr Lee’s professor of experimental philosophy (that is, physics) in Oxford, and began the much-needed rejuvenation of physics at the university, centred on the Clarendon Laboratory. The Dr Lee’s chair was attached to Wadham College, where Lindemann remained a fellow until his retirement. But in 1921 Lindemann was also elected, as was legally possible in those days, to a “studentship not on the governing body” at Christ Church, which had provided the endowment for the chair. This entitled Lindemann to rooms in Christ Church that were more spacious than Wadham could provide, and from 1922 for the rest of his life, until his death in 1957, ‘Prof’, as Lindemann was known, lived in Christ Church. He was living there when he became close to Winston Churchill in the mid-1920s and eventually acted as Churchill’s key scientific adviser during the Second World War.

In 1927, Lindemann made his first attempt to persuade Einstein to return to Oxford and give one or two lectures, on behalf of the newly established Rhodes Trust—without success. In 1930, he tried again. This time, Einstein agreed, then changed his mind. But Lindemann was determined. He saw Einstein in person in Berlin, and also worked on Mrs Einstein. Einstein agreed to give three lectures—one on relativity, the second on cosmological theory and the third on his much-discussed unified field theory—and to stay in Oxford for some weeks. A solicitous Lindemann assured Mrs. Einstein in a letter:

He can of course have as many meals as he likes alone in his rooms and I will endeavour to preserve him as much as possible from importunate invitations. I am taking steps to see that he can get some sailing, so that I hope he will not feel that he is wasting his time here altogether.

Einstein arrived in Oxford in early May 1931 and was given rooms in Christ Church on Tom Quad (now the Graduate Common Room) belonging to the classical scholar Robert Hamilton Dundas, who was away on a world tour in 1930-31. At a practical level, he was looked after by Lindemann’s indefatigable manservant and general factotum, James Harvey. Lindemann himself acted as Einstein’s mentor and guide, showing him the sights and introducing him to various friends and acquaintances. According to Lindemann, over the course of Einstein’s visit, he “threw himself into all the activities of Oxford science, attended the Colloquiums and meetings for discussion and proved so stimulating and thought-provoking that I am sure his visit will leave a permanent mark on the progress of our subject.”

His first Rhodes lecture was on 9 May. Entitled “The Theory of Relativity”, it drew a packed house in the Milner Hall of Rhodes House, with some people standing. But since the lecture included much mathematics and was also in German, it quickly went over the heads of most of the audience. Those whose maths was good enough to follow Einstein’s calculations, mostly lacked sufficient German to follow his words, while the German speakers certainly lacked sufficient maths.

By the time of the second lecture a week later, devoted to the recent notion of an expanding universe, there were somewhat fewer listeners. As The Times correspondent cautiously noted:

Once more he had an audience which, though not so large as for his first lecture, almost filled the hall. An analysis of the audience was interesting. Senior and junior members of the University were divided by a barrier. The senior members consisted chiefly of teachers in the faculties of Literae Humaniores, mathematics, natural science, and theology, all of whom are affected in some degree by the new theory. The junior members were drawn by considerations partly of science, partly of language, and partly of curiosity. The element of curiosity, however, was not so strong as for the previous lecture, and most of those present had a serious interest.… Two blackboards, plentifully sprinkled beforehand in the international language of mathematical symbol, served him for reference.

One of these Einstein blackboards was wiped by an over-zealous cleaner. Fortunately, the other one was rescued by one of the Oxford dons with a serious interest in relativity, who whisked it away to the Museum of the History of Science in Broad Street, where it today attracts much intrigued, if bemused, attention from visitors. (The wiped blackboard still exists, too, but lies ignominiously in the storeroom of the Museum.)

Just before the third lecture on 23 May, Einstein was awarded an honorary doctorate by the University at the Sheldonian Theatre. The Public Orator, presenting Einstein to the vice-chancellor in Latin, claimed that relativity, “which touched both science and philosophy, was specially acceptable to Oxonians … who had learnt from Heraclitus that you could not bathe in the same river twice”.

Then the audience in the Sheldonian—or at least those members strong enough to cope not only with Latin but also with Einstein’s German and his mathematics—proceeded to Rhodes House. After this lecture, Einstein remarked that the next time he had to lecture in Oxford, “the discourse should be in English delivered”. To which one of Lindemann’s friends was heard to murmur in German: “Bewahr!” But two years later, when Einstein gave the Herbert Spencer lecture in Oxford in 1933, “On the Method of Theoretical Physics”, he wisely spoke it in an excellent English version translated from his German by colleagues from Christ Church. This lecture included a piercing tribute to an Einstein hero, Galileo:

Conclusions obtained by purely rational processes are, so far as Reality is concerned, entirely empty. It was because he recognized this, and especially because he impressed it upon the scientific world, that Galileo became the father of modern physics and in fact of the whole of modern natural science.

However, Einstein also stated, controversially, his growing view—which would come to dominate his work in the United States—of the importance of mathematics over experiment in devising physical theories:

It is my conviction that purely mathematical construction enables us to discover the concepts and the laws connecting them which give us the key to the understanding of the phenomena of Nature. Experience can of course guide us in our choice of serviceable mathematical concepts; it cannot possibly be the source from which they are derived; experience of course remains the sole criterion of the serviceability of a mathematical construction for physics, but the truly creative principle resides in mathematics. In a certain sense, therefore, I hold it to be true that pure thought is competent to comprehend the real, as the ancients dreamed.

Undoubtedly, Einstein left a pleasant impression on the students (fellows) of Christ Church. The classicist Dundas—in whose rooms Einstein lived in 1931—was tickled to find a poem by Einstein written in German in his visitor’s book when he returned from his world tour, including the verse:

Grumble: Why’s this creature staying

With his pipe and piano playing?

Why should this barbarian roam?

Could he not have stopped at home?

While the economist Roy Harrod wrote in his biography of Lindemann that Einstein “was a charming person, and we entered into relations of easy intimacy with him.” Harrod recalled vividly that Einstein

divided his time between his mathematics and playing the violin; as one crossed the quad, one was privileged to hear the strains coming from his rooms. In our Governing Body I sat next to him; we had a green baize table-cloth; under cover of this he held a wad of paper on his knee, and I observed that all through our meetings his pencil was in incessant progress, covering sheet after sheet with equations.

On one occasion, Einstein turned up at the college’s entrance gate in a pony cart driven by a girl he had met over lunch at the house of some friends of Lindemann. Some of his admirers were waiting to help him out of the cart, but a big button from his Ulster had caught in the cart’s basket-work. His lady driver wanted to disentangle it and give it to Einstein, but the college porter said: ‘I wouldn’t worry, Miss. The gentleman will never miss it. He has one odd button on his coat already.” “Oh, in that case I shall keep it,” said the girl. “I shall probably never drive anyone so famous again!”

Robinson jacketAndrew Robinson will give a talk on “Einstein in Oxford” at Christ Church, Oxford on 3 December 2015. He is the author of Einstein: A Hundred Years of Relativity, published by Princeton University Press in 2015, and Genius: A Very Short Introduction, published by Oxford University Press in 2011.

Happy 100th Anniversary to Einstein’s General Theory of Relativity!

relativity jacketToday is the final day of our popular #ThanksEinstein series, in which an array of prominent scholars and scientists have shared their insights and reflections on relativity, Einstein, and how his work inspired their own careers. Scroll through this week’s blog posts to read pieces by Daniel Kennefick, Katherine Freese, Hanoch Gutfreund, Jürgen Renn, Alice Calaprice, Jimena Canales, J.P. Ostriker, and many more special features, including this piece on Einstein’s final days.

Einstein’s General Theory of Relativity celebrates its 100 year anniversary today. November 25, 1915, during a particularly strenuous time in his life, is when Einstein submitted his final version of the general theory of relativity to the Prussian Royal Academy, complete with the field equations that define how the force of gravity arises from the curvature of space and time by matter and energy. The theory, which is the current theory of gravitation in modern physics, has implications for everything from black holes to the idea of universe expansion. It gained rapid popularity after its conception in 1915, and in the early 1920s alone, it was translated into ten languages. Fifteen editions in the original German appeared over the course of Einstein’s lifetime.

Princeton University Press has released a special edition of Relativity: The Special and the General Theory to commemorate the anniversary, including commentary from Hanoch Gutfreund and Jürgen Renn, Einstein experts, as well as additional content such as title pages from several language translations. You can browse through them in the slideshow below. Happy 100th to the general theory of relativity! Science wouldn’t be the same without you.

Was Einstein the First to Discover General Relativity?

Today the world celebrates the day 100 years ago that Albert Einstein submitted his final version of the general theory of relativity to the Prussian Royal Academy. A theory of gravitation with critical consequences, it completely transformed the field of theoretical physics and astronomy. Einstein has long been celebrated and popularized for his contribution, but some have continued to ask whether he was, in fact, the first to discover general relativity. Daniel Kennefick, co-author of An Einstein Encyclopedia, looks at the debate:

Einstein’s Race

By Daniel Kennefick

On November 25, 1915 Einstein submitted one of the most remarkable scientific papers of the twentieth century to the Prussian Academy of Sciences in Berlin. The paper presented the final form of what are called the Einstein Equations, the field equations of gravity which underpin Einstein’s General Theory of Relativity. Thus this year marks the centenary of that theory. Within a few years this paper had supplanted Newton’s Universal Theory of Gravitation as our explanation of the phenomenon of gravitation, as well as overthrown Newton’s understanding of such fundamental concepts as space, time and motion. As a result Einstein became, and has remained, the most famous and celebrated scientist since Newton himself.

EinsteinBut what if Einstein was not the first scientist to publish these famous equations? Should they be called, not the Einstein equations, but the Einstein-Hilbert equations, honoring also the German mathematician David Hilbert? In 1915, Einstein visited Hilbert in Gottingen, and Hilbert convinced him that the goal of a fully general relativistic theory was achievable, something Einstein had nearly convinced himself could not be done. Einstein returned to work, and by November, he had found the field equations which give General Relativity its final form. However, Hilbert also worked on the ideas Einstein had discussed with him and published a paper discussing how Einstein’s theory fitted in with his own ideas on the role of mathematics in physics.

The argument for honoring Hilbert lies in a paper written by him which included the Einstein equations, derived from fundamental principles. This paper, while appearing several months after Einstein’s, was submitted on November 20, and Hilbert even sent Einstein a copy which probably reached Einstein before he submitted his own paper. In fact, a few people have even gone so far as to propose that Einstein might have stolen the final form of his equations from Hilbert.

Of course even if that were true, we are talking only about one final term in the equations (Einstein had published a close to correct version earlier in the month) and to Einstein would still belong sole credit for the enormous amount of work which went into the argument by which equations with these unique properties were singled out in the first place. We would still recognize Einstein for the critical physical thinking, while acknowledging Hilbert’s superior mathematical ability in more quickly finding the final correct form of the equations. Still, perhaps Hilbert would deserve a share of the credit for that final step. Why then do the centenary celebrations mention Einstein only and omit Hilbert almost completely?

One reason is that in the late 1990s a historian working on Hilbert named Leo Corry made a remarkable discovery. He found a copy of the proofs of Hilbert’s paper, with a printers stamp dating it to December 6, 1915. These proofs show that Hilbert made significant changes to the paper after this date. In addition, the proofs do not contain the Einstein equations. The proofs have been cut up here and there (probably by the printers themselves as they worked), so it is possible that the equations would be there if we had the missing pieces. But it is also quite possible that amidst the changes Hilbert made to the paper, he took the opportunity to include the final form of the equations from Einstein’s paper. Indeed some of the changes he made after December 6 were to update his argument from earlier versions of Einstein’s theory to the later version.

Certainly it was Einstein who felt himself to be the injured party in this short-lived priority dispute (arguably the only occasion in his life when Einstein found himself in such a dispute). He complained to a friend that Hilbert was trying to “nostrify” his theory, to claim a share of the credit. Einstein complained to Hilbert himself indeed, and some of the changes made in proofs by Hilbert included the addition of remarks giving credit for the basic ideas behind the theory to Einstein. At any rate, Einstein tried not to let proprietary feelings color his feelings of gratitude for Hilbert. He recalled well that Hilbert had played an important role in encouraging Einstein to return to his theory at a time when Einstein had, to some extent, given up on his original goals. On December 20, 1915, he wrote to Hilbert:

“There has been a certain resentment between us, the cause of which I do not want analyze any further. I have fought against the feeling of bitterness associated with it, and with complete success. I again think of you with undiminished kindness and I ask you to attempt the same with me. It is objectively a pity if two guys that have somewhat liberated themselves from this shabby world are not giving pleasure to each other.” (translated and quoted in Corry, Renn and Stachel, 1997).

So if Einstein was becoming the new Newton, as the man who solved the riddle of gravity, he was far from being a new Newton in another sense; of being the sort of man who carries on scientific grudges to the detriment of his friendship with the other great thinkers of his day.

Daniel Kennefick is associate professor of physics at the University of Arkansas, an editor of the Collected Papers of Albert Einstein, and the author of An Einstein Encyclopedia and Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves (Princeton).

For more on Einstein’s field equations, check out this article by Dennis Lehmkuhl at Caltech.