You don’t need to step into a classroom to have a run-in with mathematics. Professionals from a range of backgrounds — engineering, economics, physics, biology, computer science — use mathematics every day. To celebrate the publication of the much-anticipated Princeton Companion to Applied Mathematics, edited by **Nicholas J. Higham**, we’re thinking about all of the unique places and situations where applied mathematics is at work. Here is a list of just a few, compiled with a little help from our numerically inclined friends.

#### On the Golf Course

Golf involves mathematics, and not just when keeping score. The flight of your golf ball is affected by how air interacts with the surface of the ball. Did you know that the dimples in golf balls have a purpose, one with a mathematical explanation? Douglas N. Arnold, professor of Mathematics at the University of Minnesota, tells us more:

In the middle of the nineteenth century, when rubber golf balls were introduced, golfers noticed that old scuffed golf balls traveled farther than new smooth balls, although no one could explain this unintuitive behavior. This eventually gave rise to the modern dimpled golf ball. Along the way a great deal was learned about aerodynamics and its mathematical modeling. Hundreds of different dimple patterns have been devised, marketed, and patented. However, even today the optimal dimple pattern lies beyond our reach, and its discovery remains a tough challenge for applied mathematics and computational science.

Check out Dr. Arnold’s entry, “The Flight of a Golf Ball,” where he explains why golf ball dimples are an important part of your Saturday morning tee time.

#### On Wall Street

Wall Street is all about the numbers. Whether modeling the risk of a single stock or mapping the complex interactions that make up the world’s financial structure, mathematics helps the financial sector to study and evaluate systemic risk.

“The complexity, unpredictability, and evolving nature of financial markets continues to provide an enormous challenge to mathematicians, engineers, and economists in identifying, analyzing, and quantifying the issues and risks they pose,” write Dr. René A. Carmona and Dr. Ronnie Sircar of Princeton University.

In their entry, “Financial Mathematics,” Dr. Carmona and Dr. Sircar discuss how the finance industry uses mathematics. They also examine the role of mathematics in understanding and regulating financial markets in light of the financial crisis of 2008.

#### On Your Phone’s Weather App

In his article “Numerical Weather Prediction,” Peter Lynch presents the mathematical principles of NWP and illustrates the process by considering some specific models and their application to practical forecasting. Dr. Lynch describes the many conditions that can be better predicted using NWP:

NWP models are used to generate special guidance for the marine community. Predicted winds are used to drive wave models, which predict sea and swell heights and periods. Prediction of road ice is performed by specially designed models that use forecasts of temperature, humidity, precipitation, cloudiness, and other parameters to estimate the conditions on the road surface. Trajectories are easily derived from limited-area models. These are vital for modeling pollution drift, for nuclear fallout, smoke from forest fires, and so on. Aviation benefits significantly from NWP guidance, which provides warnings of hazards such as lightning, icing, and clear-air turbulence.

#### In the Airport Security Line

On your next trip through airport security, take a look at the x-ray machine. Once an object, like your suitcase, is scanned, the image can be viewed from multiple angles by a security officer. Threat detection software can also be used to locate problematic items. There is math at work here too.

W. R. B. Lionheart, professor of Applied Mathematics at the University of Manchester, explains this technology in his entry “Airport Baggage Screening with X-Ray Tomography.”

#### While Researching Your Next Vacation

Getting ready for your first vacation of the fall? Buying tickets, making dinner reservations, researching tourist attractions — what did we do without the internet? Or rather, what did we do before the *organized* internet?

When the internet was still in its early stages, search engines were not as advanced as they are today, and webpage results were ranked by simple rules. Searching for “New York sightseeing” may have led you to the page where the search term appears the most, instead of a page with the most useful information. Today, search engines use a more advanced method for ranking web pages: grouping pages into authority pages, which have many links to them, and hub pages, which point to many authorities. The catch is that these terms depend on one another. How does this work? In the *Princeton Companion to Applied Mathematics*, editor Nicholas Higham explains the mathematics behind webpage ranking.

Looking for more examples of math in the world? Check out this video from SIAM, where SIAM conference attendees are asked how they use math in their work. Math really is all around us.