Marilyn Roossinck: 101 viruses

Viruses are seldom considered beautiful, though visually, many are in fact stunning. While the sheer mention of them usually brings on vigilant hand-washing, some are actually beneficial to their hosts, and many are crucial to the health of our planet. Virus: An Illustrated Guide to 101 Incredible Microbes by Marilyn Roosinck offers an unprecedented look at 101 incredible microbes that infect all branches of life on Earth—from humans and other animals to insects, plants, fungi, and bacteria. Recently, Roosinck answered some questions about her gorgeously illustrated new book.

How did you come to study viruses?

MR: I started college at the Community College of Denver as an adult student (I was 22 years old), with a plan to go take two years of courses and then transfer to nursing school. I took a Microbiology course and when we studied bacterial viruses, I was totally smitten by how amazing viruses were, these very small and simple entities that could change everything! I ripped up my application to nursing school and instead transferred to the University of Colorado to pursue a degree in Biology. There were two biology departments at that time: Molecular, Cellular and Developmental Biology; and Environmental, Populational and Organismal Biology, so I did a double major and got a degree in both programs. As an undergraduate I did an independent study in a lab working on SV40, a model for many studies on mammalian viruses. I applied to the University of Colorado School of Medicine for graduate school, and I received my Ph.D. from that institution in 1986, doing a thesis on Hepatitis B virus.

Why 101 viruses?

MR: The original plan was to include 100 viruses, a nice round number and enough to allow a broad range of viruses, including those infecting all the major host groups, from bacteria to humans. Near press time the Zika virus outbreak in Brazil was attracting a lot of attention in the press, so we felt it was important to include Zika. We did not really want to remove one of the viruses that were already in the book, because these were chosen carefully, and each entry seemed important for the complete picture, so, borrowing from Hollywood, we decided 101 would also have a nice ring.

How did you choose the viruses described in the book?

MR: Making up the list of viruses to include in the book took a lot of thought. I wanted to cover every type of virus and every type of host. I also wanted to include some viruses that people would be very aware of, like influenza and Ebola. There are more human viruses in the book than those that infect any other host, because they are more thoroughly studied, and most of them are familiar to people. I also wanted to include viruses that were pathogens and those that were not. It may come as a surprise to many people that some viruses benefit their hosts, and several of these are included in the book too. I also got some help from colleagues. After making up the initial list I sent it out to a large number of virologists for comment, and I took these ideas into consideration too. Of course many people were sure that the virus they were studying was the most important virus and should be included, but I tried to ignore this as a basis for inclusion.

Do you have a favorite virus?

MR: It is hard to pick a favorite, there are so many viruses that have a fascinating natural history, or that can dramatically affect their hosts. One of my students in a Virus Ecology course that I teach at Penn State summed it up pretty well. I was introducing the topic of the how poliovirus became a serious problem in the 20th century due to changes in water treatment, and I said, “this is one of my favorite virus stories”. The student replied, “you say that about everything”.

What viruses do you work with in your own lab?

MR: I have spent about 30 years working on Cucumber mosaic virus, a serious crop pathogen that has the broadest host range of any known virus: it can infect 1200 different plant species! This means it has been very successful from an evolutionary point of view, so it is an excellent model for studying virus evolution. For the past decade I also have been studying viruses that infect fungi. My interest in these viruses began when we discovered a fungal virus in Yellowstone National Park that was beneficial to its host, allowing it to survive very high temperatures found in the geothermal areas of the park. This sparked an interest in viruses that help their hosts adapt to extreme environments, and we do a lot of work now on beneficial viruses in plants and fungi. We also are interested in the diversity of viruses, and we have done some studies looking for viruses in wild plants: there are a lot, and most of them are novel.

virus roossinck jacketMarilyn J. Roossinck is professor of virus ecology in the Department of Plant Pathology and Environmental Microbiology at Pennsylvania State University. She lives in Bellefonte, Pennsylvania. Roossinck is the author of Virus: An Illustrated Guide to 101 Incredible Microbes.

Peter Dougherty & Al Bertrand: On Being Einstein’s Publisher

by Peter Dougherty and Al Bertrand

So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest. (Albert Einstein to Robert A Thornton, 7 December 1944, EA 61-574)

For all of the scholarly influences that have defined Princeton University Press over its 111-year history, no single personality has shaped the Press’s identity as powerfully, both directly and indirectly, as Albert Einstein. The 2015 centenary of the publication of Einstein’s “Theory of General Relativity” as well as the affirmation this past February and again in June of the discovery of gravitational waves has encouraged us to reflect on this legacy and how it has informed our identity as a publisher.

The bright light cast by Einstein the scientist and by Einstein the humanist has shaped Princeton University Press in profound and far-reaching ways. It expresses itself in the Press’s standard of scholarly excellence, its emphasis on the breadth and connectedness of liberal learning across all fields, and in our mission of framing scholarly arguments to shape contemporary knowledge. All the while, Einstein’s role as a citizen of the world inspires our vision to be a truly global university press.

PUBLISHING EINSTEIN: A BRIEF HISTORY

Albert Einstein is not only Princeton University Press’s most illustrious author; he was our first best-selling author. Following his public lectures in Princeton in 1921, the Press—itself less than 20 years old at the time—published the text of those lectures, titled “The Meaning of Relativity”, in 1922. Publication followed the agitated exhortation of the Press’s then-manager, Frank Tomlinson, urging Professor Einstein to get his manuscript finished. Tomlinson wrote:

My dear Professor Einstein—

On July 6 I wrote you inquiring when we might expect to receive the manuscript of your lectures. I have had no reply to this letter. A number of people have been inquiring when the book will be ready, and we are considerably alarmed at the long delay in the receipt of your manuscript, which we were led to believe would be in our hands within a month after the lectures were delivered. The importance of the book will undoubtedly be seriously affected unless we are able to publish it within a reasonable time and I strongly urge upon you the necessity of sending us the copy at your earliest convenience. I should appreciate also the favor of a reply from you stating when we may expect to receive it.

the meaning of relativity jacketMr. Tomlinson’s letter marks something of a high point in the history of publishers’ anxiety, but far from failing, The Meaning of Relativity was a hit. It would go on to numerous successive editions, and remains very much alive today as both a print and digital book, as well as in numerous translated editions.

For all its glorious publishing history, The Meaning of Relativity can be thought of as a mere appetizer to the bounteous publishing banquet embodied in THE COLLECTED PAPERS OF ALBERT EINSTEIN, surely PUP’s most ambitious continuing publication and one of the most important editorial projects in all of scholarly publishing.

The Collected Papers of Albert Einstein

Authorized by the Einstein Estate and the PUP Board of Trustees in 1970, and supported by a generous grant from the late Harold W. McGraw, Jr., chairman of the McGraw-Hill Book Company, THE EINSTEIN PAPERS, as it evolves, is providing the first complete and authoritative account of a written legacy that ranges from Einstein’s work on the special and general theories of relativity and the origins of quantum theory, to expressions of his profound concern with civil liberties, education, Zionism, pacifism, and disarmament.

einstein old letterAn old saying has it that “good things come to those to wait,” words that ring resoundingly true regarding the EINSTEIN PAPERS. Having survived multiple obstacles in the long journey from its inception through the publication of its first volume in 1987, the Einstein Papers Project hit its stride in 2000 when Princeton University Press engaged Professor Diana Buchwald as its sixth editor, and moved the Project to Pasadena with the generous support of its new host institution, the California Institute of Technology.

Since then, Professor Buchwald and her Caltech-based editorial team, along with their international network of scholarly editors, have produced successive documentary and English translation volumes at the rate of one every eighteen months. To give you an idea of just how impressive a pace this is, the Galileo papers are still a work in progress, nearly four centuries after his death.

The EINSTEIN PAPERS, having reached and documented Einstein’s writings up to 1925, has fundamentally altered our understanding of the history of physics and of the development of general relativity, for example by destroying the myth of Einstein as a lone genius and revealing the extent to which this man, with his great gift for friendship and collegiality, was embedded in a network of extraordinary scientists in Zurich, Prague, and Berlin.

Along with the EINSTEIN PAPERS, the Press has grown a lively publishing program of books drawn from his work and about Einstein. Satellite projects include The Ultimate Quotable Einstein, as well as volumes on Einstein’s politics, his love letters, and the “miraculous year” of 1905.

Last year the Press published two new books drawn from Einstein’s writings, The Road to Relativity, and the 100th anniversary edition of Relativity: The Special and General Theory, both volumes edited by Jürgen Renn of the Max Planck Institute in Berlin, and Hanoch Gutfreund of the Hebrew University in Jerusalem.   These volumes celebrate the centenary of Einstein’s publication of the theory of general relativity in November 1915.

In this same centenary year, PUP published several other Einstein titles, including:

— Volume 14 of the Collected Papers, The Berlin Years, 1923-1925.

An Einstein Encyclopedia, edited by Alice Calaprice, Daniel Kennefick, and Robert Schulman;

Einstein: A Hundred Years of Relativity, by Andrew Robinson

Especially notable, in January 2015 the Press released THE DIGITAL EDITION OF THE COLLECTED PAPERS OF ALBERT EINSTEIN, a publishing event that has attracted extraordinary worldwide attention, scientific as well as public. This online edition is freely available to readers and researchers around the world, and represents the historic collaboration between the Press and its partners, the Einstein Papers Project at Caltech and the Albert Einstein Archive in the Hebrew University in Jerusalem.

Moreover, works by and about Einstein sit at the crossroads of two major components of the Princeton list: our science publishing program which comprises a host of fields from physics through mathematics, biology, earth science, computer science, and natural history, and our history of science program which connects PUP’s Einstein output to our humanities publishing, helping to bridge the intellectual gap between two major dimensions of our list.

Einstein’s dual legacy at Princeton University Press thus serves to bookend the conversation defined by the Press’s unusually wide-ranging array of works across and throughout the arts and sciences, from mathematics to poetry. C.P. Snow famously described the sciences and the humanities as “two cultures.” Einstein’s legacy informs our effort as a publisher to create an ongoing correspondence between those two cultures in the form of books, which uniquely serve to synthesize, connect, and nurture cross-disciplinary discourse.

EINSTEIN’S LARGER PUBLISHING INFLUENCE

Much as the living legacy of the EINSTEIN PAPERS and its related publications means to Princeton University Press as a publisher, it holds a broader meaning for us both as editors and as leaders of the institution with which we’ve long been affiliated.

Like most of our colleagues, we arrived at the Press as editors previously employed by other publishers, and having little professional interest in physics. Each of us specialized in different editorial fields, economics and classics, respectively.

Our initial disposition towards the field of physics, while full of awe, was perhaps best summed up by Woody Allen when he said: “I’m astounded by people who want to ‘know’ the universe when it’s hard enough to find your way around Chinatown.”  

But we soon discovered, as newcomers to PUP inevitably do, that the Princeton publishing legacy of Albert Einstein carried with it a set of implications beyond his specific scientific bounty that would help to shape our publishing activity, as well as that of our colleagues. We see the Einstein legacy operating in three distinct ways on PUP’s culture:

First, it reinforces the centrality of excellence as a standard: simply put, we strive to publish the core scholarly books by leading authors, senior as well as first-time. Einstein’s legacy stands as a giant-sized symbol of excellence, an invisible but constant reminder that our challenge as publishers at Princeton is not merely to be good, but to be great. As we seek greatness by publishing those books that help to define and unite the frontiers of modern scholarship, and connect our authors’ ideas with minds everywhere, we are upholding a standard embodied in the work of Albert Einstein.

The second implication of the bounty Albert Einstein is a commitment to seeing liberal knowledge defined broadly, encompassing its scientific articulation as well as its expression in the humanities and social sciences. PUP purposefully publishes an unusually wide portfolio of subject areas, encompassing not only standard university press fields such as literary criticism, art history, politics, sociology, and philosophy, but a full complement of technical fields, including biology, physics, neuroscience, mathematics, economics, and computer science. A rival publisher once half-jokingly described PUP as “the empirical knowledge capital of the world.” She was referring to our capacious cultivation of scientific and humanistic publishing, an ambitious menu for a publisher producing only around 250 books a year, but one we think gives the Press its distinctive identity.

It is no coincidence that Albert Einstein, PUP’s most celebrated author, cast his influence across many of these fields both as a scientist and as a humanist, engaged fully in the life of the mind and of the world. His legacy thus inspires us to concentrate our editorial energies on building a list that focuses on knowledge in its broadest and deepest sense—that puts into play the sometimes contentious, and even seemingly incongruous, methodologies of science and the humanities and articulates a broad yet rigorous, intellectual vision, elevating knowledge for its own sake, even as the issues change from decade to decade.

A third implication appears in Einstein’s challenge to us to be a great global publisher. Einstein, a self-professed “citizen of the world” was in many ways the first global citizen, a scholar whose scientific achievement and fame played out on a truly global scale in an age of parochial and often violent nationalist thinking.

Einstein’s cosmopolitanism has inspired the Press to pursue a path of becoming a truly global university Press. To do this, PUP has built lists in fields that are cosmopolitan in their readership, opened offices in Europe and China, expanded its author and reviewer base all over the world, and has licensed its content for translation in many languages. As we go forward, we intend to continue to build a network that allows us to connect many local publishing and academic cultures with the global scholarly conversation. This vision of the Press’s future echoes Einstein’s call for a science that transcends national boundaries.

THE FUTURE

It has been nearly a century since publication of The Meaning of Relativity and half that since the original agreement for the EINSTEIN PAPERS was authorized. We can only imagine that the originators of the latter project would be proud of what our collective effort has produced, grateful to the principals for the job they have done in bringing the PAPERS to their current status, and maybe above all, awed by the global exposure the PAPERS have achieved in their print and now digital formats.

As we continue our work with our colleagues at Caltech and the Hebrew University to extend the EINSTEIN PAPERS into the future, we are reminded of the significance of the great scientist’s legacy, especially as it bears on our identity as a global publisher, framing the pursuit of knowledge imaginatively across the arts and sciences.

The eminent Italian publisher Roberto Calasso, in his recent book, The Art of the Publisher, encourages readers to imagine a publishing house as,

“a single text formed not just by the totality of books that have been published there, but also by its other constituent elements, such as the front covers, cover flaps, publicity, the quantity of copies printed and sold, or the different editions in which the same text has been presented. Imagine a publishing house in this way and you will find yourself immersed in a very strange landscape, something that you might regard as a literary work in itself, belonging to a genre all its own.”

Now, at a time when the very definition of publishing is being undermined by technological and economic forces, it is striking to see each publisher as a “literary work unto itself.” So it is with Princeton University Press. In so far as PUP can claim a list having a diversified but well-integrated publishing vision, one that constantly strives for excellence and that stresses the forest for the trees, it is inescapably about the spirit and substance reflected in the legacy of Albert Einstein, and it is inseparable from it.

Einstein_blog (small)

 


 

Peter J. Dougherty is Director of Princeton University Press. This essay is based in part on comments he delivered at the Space-Time Theories conference at the Hebrew University in Jerusalem in January, 2015. Al Bertrand is Associate Publishing Director of Princeton University Press and Executive Editor of the Press’s history of science publishing program, including Einstein-related publications.

New History & Philosophy of Science Catalog

The History and Philosophy of Science 2016 catalog is now available:

 

Strange Glow In Strange Glow, Timothy Jorgensen relates the story of radiation, including how it helps and harms our health.
Carroll Sean B. Carroll changes the conversation about biology in The Serengeti Rules by describing how life works from the smallest cell to the largest ecosystem.
Morton Finally, Oliver Morton makes the case for geoengineering as a solution to the many challenges posed by climate change in The Planet Remade.

If you’d like updates on new titles sent directly to your inbox, subscribe to our newsletter.

Presenting the new book trailer for Strange Glow: The Story of Radiation

Five years ago on March 12, following a devastating tsunami, Fukushima Prefecture in Japan experienced the largest release of radioactive materials since the infamous nuclear meltdown in Chernobyl 30 years before. The world, understandably, was braced for the worst. But molecular radiation biologist Tim Jorgensen, author of Strange Glow: The Story of Radiation says this accident was no Chernobyl. The levels measured at Fukushima after the meltdown aren’t much higher than the annual background levels that already existed—a fact that does little to allay fears for many. How much then, do we really know about radiation and its actual dangers? Though radiation is used in everything from x-rays to cell phones, much of the population still has what Jorgensen considers an uninformed aversion to any type of exposure. In this fascinating scientific history, he describes mankind’s extraordinary, often fraught relationship with radiation.

We are pleased to present the new book trailer for Strange Glow:

Conversations on Climate: How geoengineering has been used in the past

PlanetIn The Planet Remade, Oliver Morton argues that geoengineering, the process by which Earth’s systems are manipulated, can be used in a positive way to address the problems caused by man-made climate change. Geoengineering is nothing new. Chapter 7 of The Planet Remade describes how it was used in the twentieth century to feed a growing population. A summary:

At the end of the nineteenth century it became apparent that the yield of wheat would soon fall short of the demand. Sir William Crookes, one of the leading chemists of the time, gave a speech in 1898 on the subject. The number of people who wanted to eat wheat was increasing, but by that point there was no more land on which to grow it. The solution? Increasing the amount of nitrogen in the soil to increase the amount of wheat that a given parcel of land could yield. If this wasn’t done, Crookes warned, the world would face starvation.

Nitrogen was fixed on as the key to a solution because it is a necessary component of photosynthesis. It exists in the air we breathe in the inert form of two identical atoms attached to one another. In order to aid in sustaining life, it must be detached and fixed to some other element. This happens when bacteria in plants twist nitrogen molecules and insert hydrogen molecules into the resulting spaces, turning the nitrogen into ammonia. Later, the nitrogen is returned to its inert form. The process by which nitrogen is fixed and then unfixed makes up the nitrogen cycle. As this process has proceeded uninterrupted by humans for billions of years, it has been one component in supporting increasingly more complex life forms on Earth.

Crookes was hopeful that the problem could be solved. He called on scientists to figure out a way to fix nitrogen industrially. Fritz Haber, a professor at the University of Freiburg, rose to the challenge. He and his laboratory technicians created a process by which fixed nitrogen was created by passing a continuous stream of nitrogen and hydrogen over a hot catalyst at very high pressure. His colleague Carl Bosch scaled the process up so that it could be used on an industrial scale. The process was quickly adopted globally to produce more food. By the end of the 1960s, the amount of nitrogen fixed by the Haber-Bosch process exceeded that fixed by all the microbes in the world’s soil. Both men won the Nobel Prize for their efforts. Their discoveries have had profound implications beyond the world of agriculture.

The problem identified by Crookes had been solved, but at a cost. One cost can be seen in the Gulf of Mexico every summer. Between the 1960s and 1990s, the flow of nitrogen out of America’s heartland, through the Mississippi and into the Gulf has doubled. This abundant supply of nitrogen makes ideal food for photosynthetic algae to flourish, resulting in colossal algal blooms. As they decompose, they consume all the oxygen in the water, leaving none to support other life forms. As a result, large swaths of the Gulf of Mexico become dead zones every summer.

Does this episode in history prove that humans can’t be trusted with geoengineering? Or can it be used more responsibly in the future to address the challenge of climate change? To answer that question, check out The Planet Remade here.

The Final Days of Albert Einstein

time

Albert Einstein’s time on earth ended on April 18, 1955, at the Princeton Hospital.

In April of 1955, shortly after Einstein’s death, a pathologist removed his brain without the permission of his family, and stored it in formaldehyde until around 2007, shortly before dying himself. In that time, the brain of the man who has been credited with the some of the most beautiful and imaginative ideas in all of science was photographed, fragmented —small sections parceled to various researchers. His eyes were given to his ophthalmologist.

These indignities in the name of science netted several so-called findings—that the inferior parietal lobe, the part said to be responsible for mathematical reasoning was wider, that the unique makeup of the Sulvian fissure could have allowed more neurons to make connections. And yet, there remains the sense that no differences can truly account for the cognitive abilities that made his genius so striking.

Along with an exhaustive amount of information on  the personal, scientific, and public spheres of Einstein’s life, An Einstein Encyclopedia includes this well-known if macabre “brain in a jar” story. But there is a quieter one that is far more revealing of the man himself: The story in which Helen Dukas, Einstein’s longtime secretary and companion, recounts his last days. Dukas, the encyclopedia notes, was “well known for being intelligent, modest, shy, and passionately loyal to Einstein.” Her account is at once unsensational and unadorned.

One might expect a story of encroaching death, however restrained, to chronicle confusion and fear. Medically supported death was a regular occurrence by the middle of the 20th century, and Einstein died in his local hospital. But what is immediately striking from the account is the simplicity and calmness with which Einstein met his own passing, which he regarded as a natural event. The telling of this chapter is matter of fact, from his collapse at home, to his diagnosis with a hemorrhage, to his reluctant trip to the hospital and refusal of a famous heart surgeon. Dukas writes that he endured the pain from an internal hemorrhage (“the worst pain one can have”) with a smile, occasionally taking morphine. On his final day, during a respite from pain, he read the paper and talked about politics and scientific matters.

“You’re really hysterical—I have to pass on sometime, and it doesn’t really matter when.” he tells Dukas, when she rises in the night to check on him.

As Mary Talbot  writes in Aeon, “Apprehending the truth that all things arise and pass away might be the ultimate groundwork for dying.” And certainly, it would be difficult to dispute Einstein’s wholehearted dedication to the truth throughout his life and work. His manifesto, referenced here by Hanoch Gutfreund on the occasion of the opening of the Hebrew University, asserts, “Science and investigation recognize as their aim the truth only.” From passionate debates on the nature of reality with Bohr, to his historic clash on the nature of time with Bergson, Einstein’s quest for the truth was a constant in his life.  It would seem that it was equally so at the time of his death. What, then, did he believe at the end? We can’t know, but An Einstein Encyclopedia opens with his own words,

Strange is our situation here upon earth. Each of us comes for a short visit, not knowing why, yet sometimes seeming to divine a purpose….To ponder interminably over the reason for one’s own existence or the meaning of life in general seems to me, from an objective point of view, to be sheer folly. And yet everyone holds certain ideals by which he guides his aspiration and his judgment. The ideals which have always shone before me and filled me with the joy of living are goodness, beauty, and truth. To make a goal of comfort or happiness has never appealed to me; a system of ethics built on this basis would be sufficient only for a herd of cattle.

Read a sample chapter of An Einstein Encyclopedia, by Alice Calaprice, Daniel Kennefick, & Robert Schulmann here.

Feynman on the historic debate between Einstein & Bohr

The golden age of quantum theory put many of the greatest minds of the 20th century in contact with some of the most significant scientific and philosophical questions of their era. But it also put these minds in contact with one another in ways that have themselves been a source of curiosity and ongoing scientific debate.

Richard Feynman and Albert Einstein, two towering geniuses of their time, were both as revered for their scientific contributions as they were beloved for their bursts of wisdom on a wide range of subjects. It’s hard not to wonder just what these men thought of one another. Princeton University Press, which published The Ultimate Quotable Einstein in 2010 publishes The Quotable Feynman this fall. The book includes reflections by Feynman on Einstein, from his memorable mannerisms to his contributions to some of the most heated debates in 20th century science.Feynman quote

Perhaps because of the gap between their career high points, (Einstein died in 1955; Feynman didn’t receive his Nobel Prize until 1965), there are no verified quotes where Einstein alludes to Feynman or his expansive body of work. But Feynman had made observations on the older physicist, several of which revolve around Einstein’s famous 1927 public debate with Niels Bohr on the correctness of  quantum mechanics. Central to the debate was this question: Were electrons, light, and similar entities waves or particles? In some experiments they behaved like the former, and in others, the latter.

In an attempt to resolve the contradictory observations, Einstein proposed a series of “thought experiments”, which Bohr responded to. Bohr essentially took the stance that the very act of measuring alters reality, whereas Einstein insisted that reality exists, independent of the act of measurement. Key to the philosophy of science, the dispute between the two giants is detailed by Bohr in “Discussions with Einstein on Epistemological Problems in Atomic Physics”. Richard Feynman is quoted as commenting on the debate:Feynman quote 2

An Einstein Encyclopedia contains a section on the Einstein-Bohr debates, as well as a wealth of other information on Einstein’s career, family, friends. There is an entire section dedicated to righting the various misconceptions that swirl around the man, and another on his romantic interests (actual, probable, and possible).

In spite of their differences, Bohr and Einstein were friends and shared great respect for each others’ work. Until Einstein’s death 3 decades later, they continued their debates, which became, in essence, a debate about the nature of reality itself.  feynman quote 3

Check out other new Einstein publications this fall, including:

Relativity
An Einstein Encyclopedia
The Road to Relativity

A look within — MRI technology in action

It’s 2014, and although we don’t have flying cars or teleportation, we do have some truly amazing technologies. The video of a live birth posted below has been making the social media rounds in recent weeks, and it is a wonderful glimpse of the imaging possible through magnetic resonance imaging (MRI) technology.

To fully understand the history and future challenges of imaging technology, we recommend Denis Le Bihan’s book Looking Inside the Brain: The Power of Neuroimaging. Le Bihan is one of the leading scientists and developers of MRI technology, so who better to guide readers through the history of imaging technology from the x-ray and CT scan to the PET scan and MRI. He also explains how neuroimaging uncovers afflictions like stroke or cancer and the workings of higher-order brain activities, such as language skills and also takes readers on a behind-the-scenes journey through NeuroSpin, his state-of-the-art neuroimaging laboratory.

[youtube:http://www.youtube.com/watch?v=kxwNqYwvaAI]
 

bookjacket

Looking Inside the Brain
The Power of Neuroimaging
Denis Le Bihan
Translated by Teresa Lavender Fagan

The Most Comprehensive Collection of Einstein Quotes Ever Published

Here is the definitive new edition of the hugely popular collection of Einstein quotations that has sold tens of thousands of copies worldwide and been translated into twenty-five languages.

The Ultimate Quotable Einstein features 400 additional quotes, bringing the total to roughly 1,600 in all. This ultimate edition includes new sections–“On and to Children,” “On Race and Prejudice,” and “Einstein’s Verses: A Small Selection”–as well as a chronology of Einstein’s life and accomplishments, Freeman Dyson’s authoritative foreword, and new commentary by Alice Calaprice.

In The Ultimate Quotable Einstein, readers will also find quotes by others about Einstein along with quotes attributed to him. Every quotation in this informative and entertaining collection is fully documented, and Calaprice has carefully selected new photographs and cartoons to introduce each section.

We invite you to take a look at chapter one online:
http://press.princeton.edu/chapters/s9268.pdf

“A happy man is too satisfied with the present to think too much about the future.”
–Einstein (age 17)

The Ultimate Quotable Einstein
Collected and edited by Alice Calaprice

With a foreword by Freeman Dyson

History & Philosophy of Science titles to check out

Be the first to see our new history & philosophy of science catalog at:
http://bit.ly/bSp8K2

Three Princeton titles are on Library Journal‘s best sellers list in History of Science:
http://bit.ly/cNAeEC

The Origin Then and Now
An Interpretive Guide to the Origin of Species

By David N. Reznick
Read the introduction online: http://press.princeton.edu/titles/9005.html

Predicting the Unpredictable
The Tumultuous Science of Earthquake Prediction

By Susan Hough
Read the first chapter online: http://press.princeton.edu/titles/8990.html

Vesuvius
A Biography

By Alwyn Scarth
http://press.princeton.edu/titles/8988.html