Browse our 2018 History of Science & History of Knowledge Catalog

We are pleased to announce our new History of Science & History of Knowledge catalog for 2018! Among the exciting new titles are an annotated edition of Albert Einstein’s travel diaries, a new look at the history of heredity, eugenics, and the asylum, and the latest volume of The Collected Papers of Albert Einstein.


The Travel Diaries of Albert Einstein makes available the complete journal that Einstein kept on his momentous 1922 journey to the Far East and Middle East.

The telegraphic-style diary entries—quirky, succinct, and at times irreverent—record Einstein’s musings on science, philosophy, art, and politics, as well as his immediate impressions and broader thoughts on particular events and encounters. Entries also contain passages that reveal Einstein’s stereotyping of members of various nations and raise questions about his attitudes on race. This beautiful edition features stunning facsimiles of the diary’s pages, accompanied by an English translation, an extensive historical introduction, numerous illustrations, and annotations.

This volume offers an initial, intimate glimpse into a brilliant mind encountering the great, wide world.

In the early 1800s, a century before there was any concept of the gene, physicians in insane asylums began to record causes of madness in their admission books. Almost from the beginning, they pointed to heredity as the most important of these causes. Genetics in the Madhouse is the untold story of how the collection and sorting of hereditary data in mental hospitals, schools for “feebleminded” children, and prisons gave rise to a new science of human heredity.

In this compelling book, Theodore Porter draws on untapped archival evidence from across Europe and North America to bring to light the hidden history behind modern genetics. Porter argues that asylum doctors developed many of the ideologies and methods of what would come to be known as eugenics, and deepens our appreciation of the moral issues at stake in data work conducted on the border of subjectivity and science.

A bold rethinking of the asylum, Genetics in the Madhouse shows how heredity was a human science as well as a medical and biological one.

Volume 15 of The Collected Papers of Albert Einstein covers one of the most thrilling two-year periods in twentieth-century physics. The almost one hundred writings by Einstein, of which a third have never been published, and the more than thirteen hundred letters show Einstein’s immense productivity and hectic pace of life.

Between June 1925 and May 1927, Einstein quickly grasps the conceptual peculiarities involved in the new quantum mechanics and investigates the problem of motion in general relativity, hoping for a hint at a new avenue to unified field theory. He also falls victim to scientific fraud and experiences rekindled love for an old sweetheart. He participates in the League of Nations’ International Committee on Intellectual Cooperation and remains intensely committed to the shaping of the Hebrew University in Jerusalem, although his enthusiasm for this cause is sorely tested.

THE COLLECTED PAPERS OF ALBERT EINSTEIN is one of the most ambitious publishing ventures ever undertaken in the documentation of the history of science.  Selected from among more than 40,000 documents contained in the personal collection of Albert Einstein (1879-1955), and 20,000 Einstein and Einstein-related documents discovered by the editors since the beginning of the Einstein Papers Project, The Collected Papers provides the first complete picture of a massive written legacy that ranges from Einstein’s first work on the special and general theories of relativity and the origins of quantum theory, to expressions of his profound concern with international cooperation and reconciliation, civil liberties, education, Zionism, pacifism, and disarmament. The open access digital edition of the first 14 volumes of the Collected Papers is available online at

Dalton Conley & Jason Fletcher on how genomics is transforming the social sciences

GenomeSocial sciences have long been leery of genetics, but in the past decade, a small but intrepid group of economists, political scientists, and sociologists have harnessed the genomics revolution to paint a more complete picture of human social life. The Genome Factor shows how genomics is transforming the social sciences—and how social scientists are integrating both nature and nurture into a unified, comprehensive understanding of human behavior at both the individual and society-wide levels. The book raises pertinent questions: Can and should we target policies based on genotype? What evidence demonstrates how genes and environments work together to produce socioeconomic outcomes? Recently, The Genome Factor‘s authors, Dalton Conley and Jason Fletcher, answered some questions about their work.

What inspired you to write The Genome Factor?

JF: Our book discusses how findings and theories in genetics and biological sciences have shaped social science inquiry—the theories, methodologies, and interpretations of findings used in economics, sociology, political science, and related disciplines —both historically and in the newer era of molecular genetics. We have witnessed, and participated in, a period of rapid change and cross-pollination between the social and biological sciences. Our book draws out some of the major implications of this cross-pollination—we particularly focus on how new findings in genetics has overturned ideas and theories in the social sciences. We also use a critical eye to evaluate what social scientists and the broader public should believe about the overwhelming number of new findings produced in genetics.

What insights did you learn in writing the book?

JF: Genetics, the human genome project in particular, has been quite successful and influential in the past two decades, but has also experienced major setbacks and is still reeling from years of disappointments and a paradigm shift. There has been a major re-evaluation and resetting of expectations the clarity and power of genetic effects. Only 15 years ago, a main model was on the so-called OGOD model—one gene, one disease. While there are a few important examples where this model works, it has mostly failed. This failure has had wide implications on how genetic analysis is conducted as well as a rethinking of previous results; many of which are now thought to false findings. Now, much analysis is conducted using data 10s or 100s of thousands of people because the thinking is that most disease is caused by tens, hundreds, or even thousands of genes that each have a tiny effect. This shift has major implications for social science as well. It means genetic effects are diffuse and subtle, which makes it challenging to combine genetic and social science research. Genetics has also shifted from a science of mechanistic understanding to a large scale data mining enterprises. As social scientists, this approach is in opposition to our norms of producing evidence. This is something we will need to struggle through in the future.

How did you select the topics for the book chapters?

JF: We wanted to tackle big topics across multiple disciplines. We discuss some of the recent history of combining genetics and social science, before the molecular revolution when “genetics” were inferred from family relationships rather than measured directly. We then pivot to provide examples of cutting edge research in economics and sociology that has incorporated genetics to push social science inquiry forward. One example is the use of population genetic changes as a determinant of levels of economic development across the world. We also focus our attention to the near future and discuss how policy decisions may be affected by the inclusion of genetic data into social science and policy analysis. Can and should we target policies based on genotype? What evidence do we have that demonstrates how genes and environments work together to produce socioeconomic outcomes?

What impact do you hope The Genome Factor will have?

JF: We hope that readers see the promise as well as the perils of combining genetic and social science analysis. We provide a lot of examples of ongoing work, but also want to show the reader how we think about the larger issues that will remain as genetics progresses. We seek to show the reader how to look through a social science lens when thinking about genetic discoveries. This is a rapidly advancing field, so the particular examples we discuss will be out of date soon, but we want our broader ideas and lens to have longer staying power. As an example, advances in gene editing (CRISPR) have the potential to fundamentally transform genetic analysis. We discuss these gene editing discoveries in the context of some of their likely social impacts.

Dalton Conley is the Henry Putnam University Professor of Sociology at Princeton University. His many books include Parentology: Everything You Wanted to Know about the Science of Raising Children but Were Too Exhausted to Ask. He lives in New York City. Jason Fletcher is Professor of Public Affairs, Sociology, Agricultural and Applied Economics, and Population Health Sciences at the University of Wisconsin–Madison. He lives in Madison. They are the authors of The Genome Factor: What the Social Genomics Revolution Reveals about Ourselves, Our History, and the Future.