Christie Henry on the Ecosystem of University Presses

 

Adapted from a presentation given at UGA by Christie Henry, Director, Princeton University Press

I have had the incredible fortune of living in the university press ecosystem for several decades, having moved in the fall of ‘17 to Princeton University Press, after twenty-four years with inspiring colleagues at the University of Chicago Press. University presses and the universities with which we partner are part of what I would describe as a metacommunity of ideas and knowledge—that is, a set of interacting communities linked by the dispersal of multiple, potentially interacting species.

Publishers do like to interact with species of students and academics; in fact we depend on these interactions. And it’s quite well known that each of our ecosystems draws resilience and sustainability from one another; most often our relationships are mutualisms.

As within ecosystems, there are vital nutrients that flow through our systems, among the most important of which is knowledge. Universities are the deep-sea thermal vents of knowledge, pumping it out in amazing quantities at highly concentrated sites. And university presses help create a pelagic zone for this knowledge, putting it into circulation across the globe.

Like organic nutrients, knowledge is created, consumed, processed, recycled. And we must be aware of its potential to get stuck in dead zones, or in massive clumps of plastic debris. As a vital nutrient, knowledge is also essential for us to conserve, ideally to grow.

Currently our ecosystems are facing unprecedented climate change—we can consider it our own Anthropocene. How we define “anthro” in this case varies. But we certainly don’t want to be having conversations years from now about how to clone an extinct idea or population of knowledge, much as we are now having conversations about cloning mammoths and other extinct fauna.

Strategic plans for conservation depend on an understanding of threats and challenges, and especially the climate disrupters. Those inhabiting our ecosystems will find this overview familiar terrain, I suspect, but I think it’s important to trace the contours of our current stressed landscape.

The worlds of research and knowledge are experiencing fluctuations in funding that are as erratic as global temperatures, though not trending on an increase as global temperatures are. Just as increased snowfall doesn’t negate the reality of global warming, we know that increases in the population in higher education don’t mean our system is showing signs of health and well-being. Reductions in funding, and university budgets, have run like a rhizome through our communities, have disrupted library budgets, and in the university press world have resulted in events such as the recent University Press of Kentucky battle for survival under proposed state government cuts.

We have seen massive influxes of what I could call invasive species—those that disrupt or harm our systems, the economy, and even human health. Email, many say, is one of these species. So is fake news. So too is the volume of information, which is impacting attention span, and certainly causing some concern among book publishers of all species.  Some of these influxes are leading to an extinction of time, and this has a ripple effect, with impacts on critical system operations like peer review. And even if altruism has been recognized in dolphins and scrub jays, we know there are limits. There is less time for writing, and for reading. Though some positive trends outside of the academy point to growth of reading time, it’s not necessarily time spent with books, or with long-form writing.

There are also arguably more predatory species in our communities, from rapacious journals to those attempting to extract nutrients from our systems: the tyrannical form of the assault on higher ed. And some of these predators are known to live in the Amazon, but this verdant jungle is also important to visit from time to time for all that it harbors.

We know that species diversity drives ecosystem health and stability, and another threat is the lack of diversity in our ecosystems. We are at risk of genetic bottlenecks, those major events that decrease diversity and the gene pool—immigration legislation is among the most acute recent examples.

There are pressures to grow the reach of our ecosystems, our nutrient output, while at the same time reducing incoming nutrients. Open access expectations in the book world pose one of these pressures for university presses. So does the tenure and credentialing process in those disciplines that quantify book output as a key metric.

Okay, enough of the gloom and doom. Many historical moments of massive disruption are followed by a burst of evolutionary adaptations that lead to greater diversity. And I think there is a chance we are now in our own Cambrian Explosion, amidst great radiations of knowledge and books. We will need to be intentional about supporting and preserving these ecosystems.

A recent article in the Chicago Tribunewas titled “University Presses Deserve Protection,” much as ecosystems around the world need conservation and management.

Another recent publication from the science literature shifted the foci of biodiversity from mass of species to the diversity of functional traits of species in an ecosystem as a measure of resilience. This study focused on pufferfish, and one could argue we have some of these swimming in our collective waters. But universities are growing innumerable new functional traits, as are university presses. I’d argue we in the AUP world were preadapted to this need for an array of functional traits, as our lists of book species are diverse—we publish course books, textbooks, popular books, reference works, regional works, and monographs. And we as a community function much like a honeybee democracy, which in the face of threats takes the form of an incredible superorganism—without needing to sting.

New modes of communication have also increased outlets for knowledge sharing, and we just need to learn the best ways to research and curate these. Blogs have become a flagship species in our ecosystems, inspiring books, and have provided new platforms. There was a great article in Natureyesterday about the first science conference proceedings published in graphic form, a genre we all know could benefit from evolutionary change.

Libraries and publishers are working to coevolve, crafting aggregations of content, and partnering on joint publications and initiatives.

Some evolution is at a slower pace, in the best of ways. The price of university press books in real dollars, accounting for inflation, has not increased in measurable ways at all. The nonprofit mission and ethos have been in a state of equilibrium, only rarely punctuated.

Technology is leading not just to artificial intelligence, but to new and real knowledge. Open peer review is using technology to bring in a wider range of reviewers, particularly more global ones. A recent great example is Bit by Bit: Social Science Research in the Digital Age:author and sociologist Matt Salganik worked with the Sloan Foundation to create the Open Review Toolkit. This platform facilitated feedback from around the world, at various scales, and generated a database of interested readers.

Technology has also helped to grow our landscapes, to aid in bringing our content to readers the world over on new platforms. New digital initiatives, from digital humanities, sciences, and social sciences, are animating scholarship, and the book.

And publishers are also focusing on the diversity of species—of readers, of authors, of reviewers—and that will ultimately drive our resilience, as it will the university’s ecosystem.

There are many compelling reasons to be part of the circulation and exchange between our linked metacommunities.

As I think about a field guide for those of you coming new to the AUP land, there are a number of entries in the field guide index I would point you to:

  1. Find your niche. Know your audience, especially the difference between a dissertation committee and a book readership.
  2. Look for conspecifics. Identify those species of books that are like yours, as there is strength in being part of a family. And then see where those species tend to gather, under which imprints.
  3. Think about your plumage. This includes your proposal, a vital signaling tool, but also your platform. What type of author species are you? What are the novel traits you contribute to the ecosystem? We look for functional diversity on our lists. But we are increasingly looking for how well your plumage works in the world—what we call your platform. Social media, while causing a lot of information overflow, has also become a vital signaling tool in the world of publishing—for scholarly and trade alike. Many of the signaling forms of earlier geologic eras, like print advertising, are not resonating—they are being replaced with Altmetric badges and Twitter followers, and these new efforts depend on partnerships between presses and authors.
  4. Think like bowerbird. Look for the houses that are constructed and decorated in ways that sing to you. Each publisher has its own niche, and we usually do a pretty good job of signaling that ourselves. Visit websites; visit booths in exhibit halls. And your journey should explore not just the construct of our houses, but how we get our birdsong out into the world—are we visible? are our prices reasonable? do we appear on syllabi? are our books translated widely?
  5. Sensory ecology is a wonderfully exciting field. Embrace the ways in which you can adapt this to publishing. Listen to your peers; listen to yourselves as you teach, and the books you use. Listen for the authors and books that are being mentioned in your own niche.
  6. Circulate like plankton. Find ways to share your ideas. If at conferences, be sure to test them out with publishers on-site. Though also be mindful of the conservation of energy rule for publishers—try to make sure the engagement is focused and meaningful.
  7. Be active foragers—do your research. There is so much information on press websites about their own DNA. Their priorities, strengths, weaknesses. The more you can align your approach to these strengths, the better.
  8. Be clear signaler, not stealth like anglerfish. Communicate with publishers with clarity and transparency, from the proposal to the project’s main hook, to your aspirations as an author, to the way to engage your readers with story.
  9. Prepare to be challenged by your conspecifics and your competitors. Peer review is critical by nature, but it also evolves stronger life-forms of books.
  10. Be a patient species—we know the book world sometimes seems to move at geologic time scales, but the results can be structures as magnificent and multilayered as the Grand Canyon.
  11. You may also occasionally need the tenacity of a bulldog.
  12. And nothing ignites the senses better than reading or listening to books—please make time to do so. It’s the best way to find models for different forms of writing, and to support the ecosystem with which you are now coevolving as academics.

Another reference to a recent article in Nature:

“Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioral and/or physiological responses of individual species varying over time.“ Please be those individual species that respond and behave in ways that will stabilize knowledge, and so too the evolution of the book.

 

Oswald Schmitz: Earth Environmentalism & Jazz

Pop music icon Joni Mitchell’s song “Big Yellow Taxi”, released during the headiness of the first Earth Day, ranks among the top anthems of the 1970’s environmental movement. With lyrics such as “They took all the trees and put them in a tree museum,” and, “They paved paradise and put up a parking lot,” it rebuked what humans were doing to nature in the interest of what was popularly deemed to be progress. The refrain, “Don’t it always seem to go that you don’t know what you’ve got ’till it’s gone,” adds a wistfulness for all that is lost in the name of such progress.

The song has a timeless ring given what humans are continuing to do to nature today. More than half of the global human population now lives in paved urban areas. And by all indicators, that number likely will grow to become two thirds of all humans, or even more, by mid century. It seems that there is no end in sight to humankind’s drive to pave-over nature. Indeed, the numbers of species that stand to be endangered in the name of such progress seems unconscionable. It is not surprising, therefore, that those who are committed to speak up for those species and champion their protection might become disillusioned. It seems that all we can do in the face of this unstoppable wave of global urbanization is to sing the blues, lamenting all those species that will surely go extinct, all the while losing hope that things will change.

Yet, this needn’t be a foregone outcome. Changing ways, however, require a shift in mindset about how we build urban environments. We need to stop simply being expedient by taking away all the trees, paving-over nature, and building from scratch. Instead we can and should capitalize on human ingenuity and creativity, to take care to design and build urban areas in ways that complement nature’s aesthetic and embrace its functional properties.

Take for instance a place that is near and dear to me: located a mere fifteen-minutes from where I live is part of an urban greenspace in which a river flows through a heavily treed landscape squarely in the middle of the city and several adjoining towns. I find it magical every time I step into the river at the crack of dawn, balancing against the surge of water pressure around my legs as I begin fly-fishing. I always take a moment and look up into the bordering forest to admire the kaleidoscope caused by the flecks of rising sunlight penetrating the small gaps within the dense forest canopy. The rising sun is nature’s alarm clock. There is not a person in sight, anywhere. The only sound comes from the singing birds, the flowing water, and me, breathing. Standing alone in this stretch of the river lets me forget my worries and reflect on what is good in life, including being lucky enough to have nature so close at hand.

One of the most important dividends of having healthy ecosystem functioning is the delivery of abundant, clean water. Forests on hillsides surrounding water bodies like my urban river play an important role in the delivery of clean water. By rooting to different depths in the soil, different tree species together prevent the soil from being compacted, which allows water to infiltrate and replenish soil moisture that eventually seeps down into the river. By rooting in the soil, trees prevent soil erosion during run-off events, which prevents the river from becoming murky with suspended soil particles. Such natural water treatment can help municipalities offset hundreds of millions of dollars in capital costs that would otherwise be needed to build water treatment facilities. Natural water treatment also offsets taxpayer funded water filtration costs that can run between hundreds of thousands to millions of dollars per year, depending on how much urban nature exists.

Encouraging nature as part of the urban built environment has benefits as well. Roadway trees creating urban forests filter out air pollutants such as ozone, nitrogen, and sulfur dioxides, and small particulates that cause respiratory ailments. They also provide natural air conditioning by cooling urban areas through shading. This in turn prolongs the life of infrastructure like paved roadways. It also reduces the need for energy generation that would normally be used to cool buildings and thereby reduces emissions of greenhouse gasses and air pollutants that accompany that energy generation. Urban trees help storm-water percolate into soils rather than run-off across impervious surfaces to flood urban drainage systems and watercourses, thereby reducing the concentrations of pollutants in the water supply. Estimates indicate that the value of these services to a given city could again amount to hundreds of thousands to millions of dollars. The replacement value of the trees alone can reach hundreds of millions of dollars, even after accounting for maintenance costs including tree pruning and removal, leaf pick-up and disposal, and utility-line clearing.

Urban trees offer personal health benefits as well. People living in neighborhoods with high densities of roadway trees are characterized as having higher perceptions of personal physical and mental health, of feeling younger, and of having lower incidence of cardiac and metabolic ailments than people living in the same city but in neighborhoods with fewer trees. It also encourages people to eat healthier diets, especially less meat and more servings of vegetables, fruits and grains. These health indicators persist even after accounting for differences in socio-economic factors and age. Estimates show that these lifestyle effects are equivalent to having $10,000 more in personal annual income.

The rise in urban ecological science is heralding a new era to help urban planners think more creatively about nature-informed design. Some of that creativity may come from combining natural features—such as varieties of plants with different physical structures that complement each other in their functioning—into new kinds of construction processes. Green roofs, roofs of buildings that are covered by all variety of plant species in a growing medium, are one such example. Bioswales are another. These gently sloping landscaping elements create a drainage course—a modified ditch or local depression—that is filled with natural vegetation or compost. They are usually built alongside streets or in parking lots. They collect and hold water from surface runoff to filter out silt and pollutants, thereby cleaning the water before it eventually enters a city’s storm-water sewer system.

Humanity’s influence on the Earth is forcing us to stretch our collective imagination into many realms that we have never considered before. But we have considerable scientific knowhow to support human ingenuity and thus meet the challenge of devising creative new ways to protect all the jazz. Designed landscapes change microclimates, flows and concentrations of water and nutrients, and emissions and concentration of pollutants. Hence thoughtful design must ensure that these changes lead to positive functional outcomes. Planted landscaping can even build natural habitats for many species thereby creating opportunity to lower their endangerment, as nature gets paved-over. But it requires thinking hard about the exact kinds and ways of creating habitats and how they are spatially arranged. At a minimum, that knowledge tells us that we should keep the trees whenever we pave paradise and put up a parking lot.

Oswald J. Schmitz is the Oastler Professor of Population and Community Ecology in the School of Forestry and Environmental Studies at Yale University.

Kyle Harper: How climate change and disease helped the fall of Rome

HarperAt some time or another, every historian of Rome has been asked to say where we are, today, on Rome’s cycle of decline. Historians might squirm at such attempts to use the past but, even if history does not repeat itself, nor come packaged into moral lessons, it can deepen our sense of what it means to be human and how fragile our societies are.

In the middle of the second century, the Romans controlled a huge, geographically diverse part of the globe, from northern Britain to the edges of the Sahara, from the Atlantic to Mesopotamia. The generally prosperous population peaked at 75 million. Eventually, all free inhabitants of the empire came to enjoy the rights of Roman citizenship. Little wonder that the 18th-century English historian Edward Gibbon judged this age the ‘most happy’ in the history of our species – yet today we are more likely to see the advance of Roman civilisation as unwittingly planting the seeds of its own demise.

Five centuries later, the Roman empire was a small Byzantine rump-state controlled from Constantinople, its near-eastern provinces lost to Islamic invasions, its western lands covered by a patchwork of Germanic kingdoms. Trade receded, cities shrank, and technological advance halted. Despite the cultural vitality and spiritual legacy of these centuries, this period was marked by a declining population, political fragmentation, and lower levels of material complexity. When the historian Ian Morris at Stanford University created a universal social-development index, the fall of Rome emerged as the greatest setback in the history of human civilisation.

Explanations for a phenomenon of this magnitude abound: in 1984, the German classicist Alexander Demandt catalogued more than 200 hypotheses. Most scholars have looked to the internal political dynamics of the imperial system or the shifting geopolitical context of an empire whose neighbours gradually caught up in the sophistication of their military and political technologies. But new evidence has started to unveil the crucial role played by changes in the natural environment. The paradoxes of social development, and the inherent unpredictability of nature, worked in concert to bring about Rome’s demise.

Climate change did not begin with the exhaust fumes of industrialisation, but has been a permanent feature of human existence. Orbital mechanics (small variations in the tilt, spin and eccentricity of the Earth’s orbit) and solar cycles alter the amount and distribution of energy received from the Sun. And volcanic eruptions spew reflective sulphates into the atmosphere, sometimes with long-reaching effects. Modern, anthropogenic climate change is so perilous because it is happening quickly and in conjunction with so many other irreversible changes in the Earth’s biosphere. But climate change per se is nothing new.

The need to understand the natural context of modern climate change has been an unmitigated boon for historians. Earth scientists have scoured the planet for paleoclimate proxies, natural archives of the past environment. The effort to put climate change in the foreground of Roman history is motivated both by troves of new data and a heightened sensitivity to the importance of the physical environment. It turns out that climate had a major role in the rise and fall of Roman civilisation. The empire-builders benefitted from impeccable timing: the characteristic warm, wet and stable weather was conducive to economic productivity in an agrarian society. The benefits of economic growth supported the political and social bargains by which the Roman empire controlled its vast territory. The favourable climate, in ways subtle and profound, was baked into the empire’s innermost structure.

The end of this lucky climate regime did not immediately, or in any simple deterministic sense, spell the doom of Rome. Rather, a less favourable climate undermined its power just when the empire was imperilled by more dangerous enemies – Germans, Persians – from without. Climate instability peaked in the sixth century, during the reign of Justinian. Work by dendro-chronologists and ice-core experts points to an enormous spasm of volcanic activity in the 530s and 540s CE, unlike anything else in the past few thousand years. This violent sequence of eruptions triggered what is now called the ‘Late Antique Little Ice Age’, when much colder temperatures endured for at least 150 years. This phase of climate deterioration had decisive effects in Rome’s unravelling. It was also intimately linked to a catastrophe of even greater moment: the outbreak of the first pandemic of bubonic plague.

Disruptions in the biological environment were even more consequential to Rome’s destiny. For all the empire’s precocious advances, life expectancies ranged in the mid-20s, with infectious diseases the leading cause of death. But the array of diseases that preyed upon Romans was not static and, here too, new sensibilities and technologies are radically changing the way we understand the dynamics of evolutionary history – both for our own species, and for our microbial allies and adversaries.

The highly urbanised, highly interconnected Roman empire was a boon to its microbial inhabitants. Humble gastro-enteric diseases such as Shigellosis and paratyphoid fevers spread via contamination of food and water, and flourished in densely packed cities. Where swamps were drained and highways laid, the potential of malaria was unlocked in its worst form – Plasmodium falciparum – a deadly mosquito-borne protozoon. The Romans also connected societies by land and by sea as never before, with the unintended consequence that germs moved as never before, too. Slow killers such as tuberculosis and leprosy enjoyed a heyday in the web of interconnected cities fostered by Roman development.

However, the decisive factor in Rome’s biological history was the arrival of new germs capable of causing pandemic events. The empire was rocked by three such intercontinental disease events. The Antonine plague coincided with the end of the optimal climate regime, and was probably the global debut of the smallpox virus. The empire recovered, but never regained its previous commanding dominance. Then, in the mid-third century, a mysterious affliction of unknown origin called the Plague of Cyprian sent the empire into a tailspin. Though it rebounded, the empire was profoundly altered – with a new kind of emperor, a new kind of money, a new kind of society, and soon a new religion known as Christianity. Most dramatically, in the sixth century a resurgent empire led by Justinian faced a pandemic of bubonic plague, a prelude to the medieval Black Death. The toll was unfathomable – maybe half the population was felled.

The plague of Justinian is a case study in the extraordinarily complex relationship between human and natural systems. The culprit, the Yersinia pestis bacterium, is not a particularly ancient nemesis; evolving just 4,000 years ago, almost certainly in central Asia, it was an evolutionary newborn when it caused the first plague pandemic. The disease is permanently present in colonies of social, burrowing rodents such as marmots or gerbils. However, the historic plague pandemics were colossal accidents, spillover events involving at least five different species: the bacterium, the reservoir rodent, the amplification host (the black rat, which lives close to humans), the fleas that spread the germ, and the people caught in the crossfire.

Genetic evidence suggests that the strain of Yersinia pestis that generated the plague of Justinian originated somewhere near western China. It first appeared on the southern shores of the Mediterranean and, in all likelihood, was smuggled in along the southern, seaborne trading networks that carried silk and spices to Roman consumers. It was an accident of early globalisation. Once the germ reached the seething colonies of commensal rodents, fattened on the empire’s giant stores of grain, the mortality was unstoppable.

The plague pandemic was an event of astonishing ecological complexity. It required purely chance conjunctions, especially if the initial outbreak beyond the reservoir rodents in central Asia was triggered by those massive volcanic eruptions in the years preceding it. It also involved the unintended consequences of the built human environment – such as the global trade networks that shuttled the germ onto Roman shores, or the proliferation of rats inside the empire. The pandemic baffles our distinctions between structure and chance, pattern and contingency. Therein lies one of the lessons of Rome. Humans shape nature – above all, the ecological conditions within which evolution plays out. But nature remains blind to our intentions, and other organisms and ecosystems do not obey our rules. Climate change and disease evolution have been the wild cards of human history.

Our world now is very different from ancient Rome. We have public health, germ theory and antibiotic pharmaceuticals. We will not be as helpless as the Romans, if we are wise enough to recognise the grave threats looming around us, and to use the tools at our disposal to mitigate them. But the centrality of nature in Rome’s fall gives us reason to reconsider the power of the physical and biological environment to tilt the fortunes of human societies. Perhaps we could come to see the Romans not so much as an ancient civilisation, standing across an impassable divide from our modern age, but rather as the makers of our world today. They built a civilisation where global networks, emerging infectious diseases and ecological instability were decisive forces in the fate of human societies. The Romans, too, thought they had the upper hand over the fickle and furious power of the natural environment. History warns us: they were wrong.Aeon counter – do not remove

Kyle Harper is professor of classics and letters and senior vice president and provost at the University of Oklahoma. He is the author of The Fate of Rome, recently released, as well as Slavery in the Late Roman World, AD 275–425 and From Shame to Sin: The Christian Transformation of Sexual Morality in Late Antiquity. He lives in Norman, Oklahoma.

This article was originally published at Aeon and has been republished under Creative Commons.

Essential Reading in Natural History

Princeton University Press is excited to have a wide variety of excellent titles in natural history. From the Pacific Ocean, to horses, to moths, our books cover a range of topics both large and small. As summer winds down, take advantage of the last weeks of warm weather by bringing one of our handy guides out into the field to see if you can spot a rare butterfly or spider. To find your next read, check out this list of some of our favorite titles in natural history, and be sure to visit our website for further reading.

Britain’s Mammals by Dominic Couzens, Andy Swash, Robert Still, and Jon Dun is a comprehensive and beautifully designed photographic field guide to all the mammals recorded in the wild in Britain and Ireland in recent times.

Mammals

Horses of the World by Élise Rousseau, with illustrations by Yann Le Bris, is a beautifully illustrated and detailed guide to the world’s horses.

Horses

A Swift Guide to the Butterflies of North America, Second Edition, by Jeffrey Glassberg is a thoroughly revised edition of the most comprehensive and authoritative photographic field guide to North American butterflies.

Butterflies

Big Pacific by Rebecca Tansley is the companion book to PBS’s five-part mini series that breaks the boundaries between land and sea to present the Pacific Ocean and its inhabitants as you have never seen them before.

Pacific

Britain’s Spiders by Lawrence Bee, Geoff Oxford, and Helen Smith is a photographic guide to all 37 of the British families.

Spiders

The second edition of Garden Insects of North America by Whitney Cranshaw and David Shetlar is a revised and updated edition of the most comprehensive guide to common insects, mites, and other “bugs” found in the backyards and gardens of the United States and Canada.

Cranshaw

Last but not least, Mariposas Nocturnas is a stunning portrait of the nocturnal moths of Central and South America by famed American photographer Emmet Gowin.

Gowin

John Kricher on The New Neotropical Companion (revised & expanded)

The New Neotropical Companion by John Kricher is the completely revised and expanded edition of a book that has helped thousands of people to understand the complex ecology and natural history of the most species-rich area on Earth, the American tropics. Featuring stunning color photos throughout, it is a sweeping and cutting-edge account of tropical ecology that includes not only tropical rain forests but also other ecosystems such as cloud forests, rivers, savannas, and mountains. This is the only guide to the American tropics that is all-inclusive, encompassing the entire region’s ecology and the amazing relationships among species rather than focusing just on species identification.

What originally focused your interest in the Neotropics and why did you want to write about the region? 

JK: When I was early in my career in ecology and ornithology, way back in the 1970s, I longed to experience the tropics, to be in hot, steamy equatorial jungles, the ecosystems of the world that harbor the most species.  There was so much I wanted to see, especially bird species. It was really birds that got me there.  I wanted to see firsthand the various tropical birds, the antbirds, parrots, cotingas, trogons, toucans, etc.  To me, these were pure glamor birds, and so many of them.  Reading about them only intensified my need to go and see them firsthand.  So, I jumped on the first opportunity that came along to get myself passage into “the Torrid Zone.”

And what was that opportunity? 

JK: I met a man who was to become a long-time close friend, Fred Dodd.  Fred had just started a company called International Zoological Expeditions (IZE) and he was organizing trips to Belize for college classes.  I saw such a trip as my ideal way to get a foothold in the tropics.  And it worked!  My first tropical experience was to take a class of about 30 students from Wheaton College to Belize and Guatemala over semester break in January of 1979.  The unexpected and challenging experiences we had as we faced numerous logistical hurdles in this admittedly pioneering effort would, in themselves, make a pretty cool book.  But we did it, I loved it, and wanted more, much more.  When I meet my first Tropical Ecology students at alumnae gatherings they all want to relive memories of “the Belize trip.”  We tell the same stories over and over and never seem to tire of it.  Going to Belize, getting to the American tropics, was a watershed experience for me, transforming my career.

Why did you feel the need to write A Neotropical Companion and how did you choose that title? 

JK: It was hard to systematically organize information to present to students about the American tropics.  In the late 1970s information about the tropics was widely scattered and incomplete.  For example, there was no single book I could recommend to my students to prepare them for what would await them in the field.  At the same time, I read multiple journal articles on everything from tree diversity to army ant behavior and it was such cool stuff.  I loved telling the students my various “stories” gleaned from the ecological literature.  As I made more and more visits to Central and South American countries my own perspective was greatly enhanced so I could bring something to the table, so to speak, directly from personal experience.  My knowledge base grew in leaps and bounds and I kept expecting that any day a book would be published that would bring together what I was experiencing and enjoying.  It never was.  So, I thought I could adapt my course information into an introductory book. That was what spawned A Neotropical Companion.  The illustrations in the first edition, published in 1989, were by one of my tropical ecology students who adapted them from her field notebook kept when she took my tropical course in Belize.  As for the title, when Judith May, editor at Princeton University Press, read my manuscript she liked it and said, with enthusiasm, that she had “the perfect title” for the book.  It was Judith who gave it its name.

Your first edition was nicknamed “The Little Green Book.”  Did its popularity surprise you? 

JK: It did.  It was flattering that many folks told me they carried my little green book on various tropical trips and found it very informative and easy to read.  And it was indeed a little green book that conveniently fit in a pocket or backpack.  I knew I had barely scratched the surface with regard both to breadth and depth of information but I was very pleased and a bit surprised by the warm reception the book received.  And as I began making frequent trips to lowland Amazonia as well as Andean ecosystems I knew it was time to expand and revise the book.  The little green book needed to grow.  It did that with the publication of the second edition in 1997 and obtained what I consider its “full maturity,” a coming of age, in the present edition.  It is no longer green and no longer little but much more comprehensive and far better illustrated than its predecessors. This is the book I had always wanted to write.

What is the biggest thing that has changed with regard to visiting the American tropics since you first wrote your Little Green Book? 

JK: In the nearly 30 years since I published the first edition the American tropics has become much easier and more comfortable to visit.  Good tourist lodges were relatively few when I first visited the tropics and now they abound. Talented local guides skilled in finding wildlife take groups to see all manner of fantastic species such as Harpy Eagle, for example. There are now tours in which you are virtually assured of getting fine views of fully wild jaguars.  I wrote in the first edition about being very careful as to what you eat, where you go, and various health concerns.  I scaled that way back in my new edition because it is no longer necessary to include it.  A determined traveler may make trips virtually anywhere in the Neotropics and do so safely and in relative comfort, though some areas do remain rugged and challenging.  There are now even tours to Theodore Roosevelt’s famous “River of Doubt,” once considered a huge challenge to explorers.  This was unheard of when I began my travel to the tropics.

Are you still always being asked about encountering snakes and biting insects in the tropics?

JK: Indeed, I am.  And to be truthful, snakes, including many venomous species, are relatively common if not abundant in some tropical venues, though they are not necessarily easy to find unless one is skilled at searching for them.  It is important to be vigilant when on trails and walking around lodges and field stations, especially at night or after a rainfall.  Snakes may be out and about.  But very few encounters result in venomous snake bites.  I encourage people to experience snakes as interesting and beautiful animals and, as one would a lion on the Serengeti, make sure to maintain a respectful distance.  In Trinidad, my group encountered a huge bushmaster, the largest of the Neotropical venomous snakes.  It was crossing a road late at night and was caught in the headlights of our van.  We all saw it well and from a safe distance, a thrilling sight.  As for insects, I have rarely been very bothered by them, especially mosquitos, but if you travel in rainy season mosquitos may be locally abundant and highly annoying.  Visitors to the tropics must really beware of bees and wasps and even ants, some of which act aggressively if disturbed and may pack a powerful sting.  One ant is called the “bullet ant” because it bites you, holds on, and then stings you. The sting allegedly feels like you were hit with a bullet.

Now that The New Neotropical Companion is complete do you have any plans for further exploration of the Neotropics or are you satisfied that you have done all you set out to do?

JK: I continue to be strongly drawn to the American tropics.  I have very recently visited Honduras and Cuba.  I have plans for trips to numerous other Neotropical venues, from Guyana to Peru and Amazonia.  The wonder of the regional biodiversity has always compelled me to want to see more, go to new areas as well as revisit places I have come to know well, and just keep on learning.  No two visits to the tropics, even to a place where one has been repeatedly, are the same.  The more you go, the more you see.  So, I keep going.

John Kricher is professor of biology at Wheaton College. His many books include Tropical Ecology, The Balance of Nature: Ecology’s Enduring Myth, and Galápagos: A Natural History.

Rebecca Tansley & Craig Meade: The Pacific Ocean as you’ve never seen it before

The Pacific Ocean covers one-third of Earth’s surface—more than all of the planet’s landmasses combined. It contains half of the world’s water, hides its deepest places, and is home to some of the most dazzling creatures known to science. The companion book to the spectacular five-part series on PBS produced by Natural History New Zealand, Big Pacific breaks the boundaries between land and sea to present the Pacific Ocean and its inhabitants as you have never seen them before. Providing an unparalleled look at a diverse range of species, locations, and natural phenomena, Big Pacific is truly an epic excursion to one of the world’s last great frontiers. In our latest Q&A, author Rebecca Tansley and showrunner Craig Meade ask each other questions about the series, the book, and the majestic Pacific Ocean:

Questions from Rebecca to Craig

There have been a lot of documentaries made about the oceans and the animals that live in them. How did the Big Pacific idea come about and what new perspectives did you think this series could bring?
It started ten years ago in a late night conversation in France with some of Japan’s best wildlife filmmakers.  We realized that after a thousand years of humanity dominated by the Atlantic and its people that the next thousand years would probably be owned by the Pacific. We conjectured that if we inverted the paradigm and considered the Pacific Ocean a continent, it would already hold many of the world’s major cities: Seattle, LA, Tokyo, Shanghai, Sydney, Taipei.  So what are the natural values of this new continent, what does it say to us, and what does it mean to us? What are its emotional messages? Let’s put a flag in it, explore it and see what we discover about it. So that night we started looking for the defining stories that we should tell of the Pacific Ocean.

The book sections match the episodes of the Big Pacific show – Passionate, Voracious, Mysterious, Violent. How did you come up with these themes and decide to structure the series around them?

To matter, stories must move us, trill our emotional strings. Usually these kind of words are embedded in the undercurrent of the script. Hinted at. But the Pacific is big and bold and we thought our statements about it should be so too. It’s all those things: passionate, voracious, violent and mysterious, but it’s also many other things. So I don’t believe this journey to capture its multitude of faces is yet over. Please let me do the Ecstatic, Selfish and Uncertain shows one day as well!

I talked to crew members about some of the special moments in the series’ production, but which is the most special Big Pacific moment for you, on screen?

The Yellow eyed penguins in the Passionate episode. Less than 4000 adults remain. They are a species that may have just a decade or two left and the cinematographer captured their cold and lonely existence beautifully. It’s not a story of sorrow but one of the bird’s passionate relationship with its mate and family. Like a black and white waddling hobbit he comes home from work and wanders through the mossy forest to the cave they all share. It’s an idyllic glimpse of natural New Zealand and a rare and wonderful animal few people are ever going to see. If they disappear for good from the wild I’ve no doubt this story is the one they’ll play to teach kids what a Yellow eyed penguin once was like.

The Big Pacific series is highly entertaining but also packed with fascinating information – I learned a lot writing the book! In a world of increasing pressure on our natural environment, what is the role of natural history storytelling?

I think it’s increasingly important we do not sugar-coat the truth. We mustn’t be the blind purveyors of a dream while a nightmare plays out in the natural world. So as filmmakers there’s always a tension in what we do. I actually want to bring you a dream so you know why we must protect what we have left in the wild world – but I mustn’t let that dream lie to you and hypnotize you into believing the dream is entirely real. Because in some cases the dream is already over. Like the Yellow eyed penguin story I mentioned, I find myself handling a story as though I am preserving something already lost; instead of revealing something new I find myself working to faithfully capture the essence of what was.

Questions for Rebecca from Craig

The Pacific Ocean is many things to many people: a place, a home, a source of food, a gulf between land masses. How did writing the Big Pacific book change your sense of what the Pacific is to us?

I grew up with the Pacific literally at my front door and I’ve never been far from it for my entire life. It’s been my playground, my pastime and my place of solace. Because of this, for me as well as millions of other people like me, it’s hard to define just what the Pacific means – it just infuses our lives. This is one of the many reasons I was attracted to this project, because of the way it focuses not just on the Pacific’s natural history but on people’s relationship with it too. I hope that comes through in the book, because you can’t separate the animals or the people from the ocean they live in and around. We are, actually, in many ways defined by our place in or on the Pacific. Writing the book reinforced this view and gave me an opportunity to express it.

There are so many evocative images in the Big Pacific book, is there one that you keep on returning to?One animal that you want to meet?

Oh that’s a tough one, because I’m in love with so many of the animals and the images! I’ve always had a strong interest in whales so I find the images of the rare Blue whale captured by Big Pacific Director of Photography, the late and obviously very talented Bob Cranston, mesmerizing. But in the course of writing the book I discovered many other wonderful members of the Pacific community. Among them are the Wolf eels, whose dedication to their partner and to their brood is totally endearing. I love the images of the Firefly squid because they seem so ethereal and their lives are so fleeting, yet nature has nonetheless equipped them miraculously for their short, spectacular journey. Plus I can’t not mention the Chinese horseshoe crab, because they are such admirable survivors. I hope the whole world wakes up to the beauty and value of all the animals that live in and around not just the Pacific but all the planet’s oceans, and recognizes that they deserve their place in it for the future as much as we do.

Natural history stories at their heart are science stories – but with fur and scales. To be enjoyable and understandable they usually require simplification, but still need to be highly accurate. That sounds like a complicated dance to perform when writing, was it?

I’m a storyteller, not a scientist, but like a scientist I’m curious about the world. The process I used for Big Pacific worked well. First I read the (draft) series scripts and watched the Big Pacific footage. This meant I became intrigued with the animals first and foremost as characters, and was drawn into other aspects of the Pacific’s natural history – such as the Silver Dragon and the Ring of Fire – as stories. When I set about writing I drew on the science that was provided to me by Big Pacific researcher Nigel Dunstone. Then it was a matter of asking myself, what do I find interesting about that animal or story that others might also enjoy? What might people not know? What is dramatic about this story? Of course I also ensured I was covering off important information, such as environmental threats and conservation status, and everything I wrote was checked afterwards by Nigel and the Big Pacific team.

You’ve made some fantastic films between your writing jobs, is it hard to transition from the spoken word to the written?  Are they two different crafts?

Writing and filmmaking are related in terms of both entertaining and organizing information for an intended audience, but they do that in different ways and to a large extent employ different skill-sets. Obviously filmmaking is a collective pursuit that usually requires a team of people, whereas writing is a solitary craft. I enjoy both equally and writing/directing my own films enables me to do this. I was fortunate enough to spend time with the Big Pacific team when I selected the images for the book, and also interviewed others, so in this writing project I did get to collaborate. I would add that when I write I’m very conscious of rhythm – an aspect that’s also important to aspects of filmmaking, such as narration and editing. I’m not really musical, but I like to think that I have that sense of linguistic rhythm and flow. Perhaps that’s why I studied languages for many years!

TansleyA documentary filmmaker herself, Rebecca Tansley has previously worked at the production company that made the Big Pacific series, NHNZ. In addition to writing and directing films she has written two other internationally published books and been a contributor to national magazines and newspapers in her home country of New Zealand. Rebecca has degrees in languages, media production and law.

Craig Meade and the production team at NHNZ are some of the most successful and prolific producers of natural history programs on the planet—more than 50 wildlife shows completed in just the last four years. But after 30 years of writing and directing Craig still doesn’t class himself as a wildlife filmmaker—he’s a science guy that prefers mud, tents and mosquitoes to laboratories. When he’s not making films Craig is a deer hunter and an on-call fire fighter.

Paul Strode: Teaching The Serengeti Rules

CarrollIn January of 2016 I was asked by Laura Bonetta at the Howard Hughes Medical Institute (HHMI) to write a teacher’s guide for the short film Some Animals Are More Equal than Others: Keystone Species and Trophic Cascades. At the same time, Molecular Biologist Sean B. Carroll, the HHMI Vice President of Science Education, was putting the finishing touches on his new book, The Serengeti Rules. To help expedite my research for writing the teacher’s guide for the short film, Laura sent me a pre-pub copy of the book and suggested I read Chapter Six: “Some Animals Are More Equal than Others.”

Instead of going straight to Chapter Six, I started reading from the beginning.

Before I was even halfway through the first chapter, I thought to myself, this book is going to change the way I teach. At the core of Carroll’s storytelling is the observation that everything is regulated, from molecules to megafauna. Indeed, for most of my career teaching biology I have kept my focus on Theodosius Dobzhansky’s argument that “nothing in biology makes sense except in the light of evolution.” But Carroll has now made it clear that nothing in biology also makes sense except in the light of regulation.

To make a long story short, I wrote the short film teachers guide with the help of Chapter Six in The Serengeti Rules and immediately followed that task by reviewing the book for The American Biology Teacher so that other teachers might benefit from reading the book. In my review, I argued that The Serengeti Rules “should be required reading for students in all fields of science, but especially those pursuing careers in biology education.” My review caught the attention of Carroll’s editor at Princeton University Press, Alison Kalett. Alison was curious to know if teachers like me that planned to use Carroll’s book to enhance their biology courses would find it useful if educational supplementary materials were made available… for free. Alison and I came up with a plan and I began to write.

The Serengeti Rules came out in March of 2016 and one of Carroll’s first public discussions about the book was at the annual Professional Development Conference of the National Association of Biology Teachers in Providence, Rhode Island. Several hundred teachers showed up to hear from Dr. Carroll and it was standing room only. As word got out that supplementary materials were being prepared for Carroll’s book, inquiries began to pop up on social media.

Carroll

The Educational Supplement was released in May and is a document that a teacher can use immediately in the classroom.

Carroll

The questions come in various styles and are designed to invoke classroom discussion, require students to synthesize and connect various biological concepts, get students to engage with ecological data from the published journal articles, and have students analyze and graph data that relate to what they are reading in The Serengeti Rules. For example, the question below relates to Chapter Four of The Serengeti Rules, “Fat, Feedback, and a Miracle Fungus.” The question can be used as a formative assessment question that marries real data with the nature of science and covers several components of the Advanced Placement and International Baccalaureate biology course content.

Carroll

Teachers have already begun planning to use The Serengeti Rules to enhance their courses and since the release of the supplement have expressed their gratitude that it is available and free!

Carroll

And of course, I have assigned The Serengeti Rules as summer reading for my 65 AP/IB biology students and I am looking forward to using the questions in the fall to incite discussion and enhance learning and understanding.

Thank you, Sean B. Carroll, for giving us The Serengeti Rules!

Dominic Couzens: The extraordinary (and overlooked) water shrew

water shrewAsk most people whether they have heard of a water shrew and they’ll shake their head. If you tell them that there are 1.9 million water shrews in Britain and that they have a poisonous bite, then those same people are likely to raise their eyebrows, amazed they have never heard of it. The water shrew (not a water vole or a “water rat”) manages to keep a remarkably low profile for the extraordinary creature that it is.

Shrews are the mammals that look superficially like mice—they are small, brown and furry—yet are quite unrelated to them. They are flatter-bodied than mice and don’t hop, and have long snouts that move around in a somewhat robotic, mechanical fashion as they seek food. With small eyes (they are related to the almost-blind moles) and small ears, shrews lack the features that give mice and voles an easy identity to humankind. Shrews don’t live indoors or steal our food, either; they subsist on a diet of insects and other small living things. So shrews aren’t exactly on our doorsteps, asking to be noticed.

But shrews cross our paths alright, even if we aren’t looking. They are among the most abundant of all our mammals. Aside from the water shrew, there are 42 million common shrews and 8.6 million pygmy shrews in Britain; a veritable army of voracious insect- and worm-guzzlers living at our feet. They prefer to live in long grass, dense shrubbery, and other places where it’s easy to hide.

And, of course, they choose the waterside, too. The water shrew, the largest and best-turned out of our three common species, with its smart white underside contrasting with business-suit-black above, is the most aquatic of the three. Although it is perfectly at home in undergrowth away from water, its signature hunting method is to immerse in still or slow-flowing water, diving down to depths of 2m or more for up to 30 seconds, to snap up crustaceans, insect larvae, snails, worms, and small vertebrates such as newts, frogs, and fish. It is the only British mammal adapted to tap into this underwater niche of small freshwater life.

As it happens, the water shrew can also tackle prey larger than itself, by means of its remarkable venomous saliva, which immobilizes frogs or fish. The venom is a neurotoxin, causing paralysis and disorders of the blood and respiratory system. It is toxic enough to be a very unpleasant skin irritatant in humans that may take days to subside.

The water shrew has several adaptations to its preferred aquatic lifestyle. The surface of each foot is fringed with stiff hairs, increasing the area of the limb, like a flipper, allowing this mite to swim efficiently. The tail also has stiff hairs on the underside, making it act like a rudder, for steering. The hairs on the body also trap a layer of air, keeping the shrew warm underwater, even in the middle of winter.

Shrews, although small, don’t hibernate. Instead they must remain active throughout the winter, requiring a meal at least every two hours, day and night. It isn’t easy to sustain, and many shrews don’t survive. In fact, almost every adult dies after a single breeding season, meaning that only the juveniles born during the spring and summer survive to the next season—just another extraordinary aspect of this overlooked animal’s life.

Dominic Couzens is one of Britain’s best-known wildlife writers. His work appears in numerous magazines, including BBC Wildlife and BBC Countryfile, and his books include Secret Lives of Garden Wildlife and Britain’s Mammals: A Field Guide to the Mammals of Britain and Ireland.

Oswald Schmitz: Reflecting on Hope for Life in the Anthropocene

This post by Oswald Schmitz, author of The New Ecology, was originally published on the March for Science blog. On April 22, PUP’s Physical and Computer Sciences editor Eric Henney will be participating in a teach-in the National Mall, focusing on the social value of direct and engaging scientific communication with the public. 

Springtime is a welcome reprieve from a prolonged cold winter. It is a time of reawakening when all kinds of species become impatient to get on with their business of living. We hear the trill of mating frogs, see leaves unfurl from their quiescent buds, and behold forest floors and fields unfold rich color from a dizzying variety of blossoming wildflowers. The energetic pace of life is palpable. It is only fitting, then, that we dedicate one spring day each year – Earth Day – to commemorate the amazing variety of life on this planet, and to take stock of the human enterprise and reflect on how our behavior toward nature is influencing its sustainability.

For many, such reflection breeds anxiety. We are entering a new time in Earth’s history—the Anthropocene—in which humans are transitioning from being one among millions of species to a species that can single-handedly determine the fate of all life on Earth. Many see the Anthropocene as a specter of doom, fraught with widespread species extinctions and loss of global sustainability, and attributable to humankind’s insatiable drive to exploit nature.

This view stems from the conventional idea that all living beings on Earth represent a heritage of slow evolutionary processes that occurred over millennia, culminating in the delicate balance of nature we see today. Many despair that humans are now jeopardizing the balance, as species will necessarily be incapable of coping with the onslaught of ever-new and fast-paced changes.

Iguana

An Aegean Wall Lizard, so named because of its evolved habit to live and hunt in rock walls constructed around crop fields in Greece. Individuals living on the walls have different limb morphology and mobility than counterparts of their species that are found within their original sandy habitats, demonstrating their capacity to adapt and thrive in human developed landscapes. Photo courtesy of Colin Donihue.

As an ecologist, I am torn by the changes I see. I have a deep and abiding respect for the amazing diversity of living organisms, their habits and their habitats. This ethic was shaped during my childhood when I was free to wander the natural environs of my hometown. I could go to those places any time of day, during any season: breathing, smelling, listening, observing, touching and tasting to discover nature’s wonders. That sense of wonder has endured. It’s what keeps me asking the probing questions that let me learn scientifically how species fit together to build up and sustain nature. It thus saddens—sometimes even maddens—me to see nature’s transformation in the name of human “progress.”

But as a scientist, I must admit that these changes are also fascinating. It turns out that rapid human-caused changes present much opportunity for new scientific discoveries. They force me to see and appreciate the dynamism of nature from fundamentally new vantage points. I find that nature can be more resilient than we often give it credit for, a fact that should inspire hope for a bright, sustainable environmental future in the Anthropocene.

Changing the mindset from despair to hope requires letting go of a deeply held notion that nature exists in a fragile balance, and that humankind has a persistent habit of disrupting that balance. Nature is perpetually changeable, with or without human presence. Life’s energetic pace, and the primal drive of all organisms to survive and reproduce, is what builds resilience in the face of change. We are learning how nutrients are perpetually transformed and redistributed by plant and animal species to sustain myriad ecological functions. These functions ensure that we have ample clean and fresh water, deep and fertile soils, genetic variety to produce hardy crops, the means to pollinate those crops, and the capacity to mitigate impacts of gaseous emissions, among numerous other services that humans rely on to sustain their health and livelihoods. Many species also can rapidly acclimate and even evolve within a mere span of a couple of human generations to cope with significant and rapid environmental change. Such adaptability allows many ecological systems to recover from human-caused disturbances and damages within the short time span of a human lifetime, no less.

This capacity for resilience is perhaps our most important evolutionary heritage. It is what gives hope for a sustainable future. The challenge of sustainability, then, is to engage with nature without eroding this capacity. The emerging science-based ethic of earth environmental stewardship can help on this front. It sees humans and nature entwined, where humans have obligations to one another mediated through their mutual relationships with nature.

Earth environmental stewardship strives to sustain nature’s resilience by protecting the evolutionary and ecological interdependence of all living beings and the physical environment. It strives for continuous improvement of environmental performance and human wellbeing through a commitment to use nature’s resources wisely and efficiently as dividends of resilient ecosystem functions. This means protecting entire ecosystems, not just their parts, and ensuring the development of sensible environmental policies and regulations to ensure that ecosystem services benefit all living beings now and in the future.

Effective earth environmental stewardship requires that we take deliberate interest in becoming scientifically informed about how our needs and wants are linked to our local environment and the larger world beyond. So on this Earth Day, it is perhaps fitting to reflect on and celebrate our amazing scientific achievements to understand the durability of nature and the wealth of opportunity it offers for a sustainable future in the Anthropocene.

Oswald J. Schmitz is the Oastler Professor of Population and Community Ecology in the School of Forestry and Environmental Studies at Yale University. His books include Resolving Ecosystem Complexity and The New Ecology: Rethinking a Science for the Anthropocene.

A sneak peek at BIG PACIFIC, companion to upcoming PBS series

The companion five-part series on PBS: Big Pacific will air Wednesdays on PBS, June 21-July 19, 2017

The Pacific Ocean covers one-third of Earth’s surface—more than all of the planet’s landmasses combined. It contains half of the world’s water, hides its deepest places, and is home to some of the most dazzling creatures known to science. The companion book to the spectacular five-part series on PBS produced by Natural History New Zealand, Big Pacific by Rebecca Tansley breaks the boundaries between land and sea to present the Pacific Ocean and its inhabitants as you have never seen them before.

Illustrated in full color throughout, Big Pacific blends a wealth of stunning Ultra HD images with spellbinding storytelling to take you into a realm teeming with exotic life rarely witnessed up close—until now. Providing an unparalleled look at a diverse range of species, locations, and natural phenomena, Big Pacific is truly an epic excursion to one of the world’s last great frontiers. Take a sneak peek here:

 

 

The New Ecology

The New Ecology by Oswald J. SchmitzIn The New Ecology, Oswald Schmitz provides a concise guide to ecological thinking for an era in which the activity of one species—humans—has become the dominant influence on the environment, the Anthropocene. Much traditional ecological thinking has attempted to analyze the natural world in isolation from the social world of human life, regarding the human world as an external disturbance to the state of nature. The New Ecology seeks to bridge this nature/human divide and understand human life as an integral part of local and global ecosystems. In turn, it seeks also to recognize the scale of human influence on the environment and to promote an ethic of environmental stewardship, of responsible use and husbandry of the resources embodied in the ecosystem.

Two fields that might seem paradoxical areas of study for ecologists are industry and the city. One might think that the factory and the concrete jungle are as far removed from ecological concerns as one can get. However Schmitz points out that neither can be considered in isolation from either the natural world or the global economy, and that both can benefit from ecological thinking. Much modern industry is dependent on raw materials extracted through mining, raw materials which are necessarily finite in supply, meaning that in the long term these industries cannot be sustainable. Schmitz suggests that these industries could be reconfigured to mirror the cycles of food chains in which different organisms act to produce, to consume, and to decompose food to once again become raw material for the producers. To some extent, the practice of recycling follows this cycle, but we are a long way from recycling enough to supply all the raw materials needed for production. Massive quantities of these raw materials are being lost to landfill. One step in the right direction would be to design products with their ultimate decomposition in mind, to make it as easy as possible to break down and recycle the constituent materials. Taking things further, we can think of industries as making up complementary clusters in which, as in ecosystem food chains, the waste products from one industry become inputs for another. Schmitz notes the example of a development in Denmark in which “an electric power company, a pharmaceutical plant, a wall-board manufacturer, and an oil refinery exchange and use each other’s steam, gas, cooling water and gypsum residues.” (p.174) Another potential resource is the enormous quantities of raw materials embodied in our cities—could cities become the mines of the future?

Cities also need to be considered as their own distinct type of ecosystem. The urbanization of the global population continues; it is estimated that as much as 90% of the the world’s population will live in cities by the year 2100 (p.180). The sustainability of these cities will depend in part on the extent to which they can produce the materials needed for operation and minimize dependence on external resources. Thanks to ecological study we are increasingly aware of the vital role played by urban trees and greenspaces in filtering pollutants from the air, cooling the urban environment (in turn reducing energy use for cooling buildings), and controlling rainwater run-off. These unpaid services can be valued at hundred of thousands of dollars (p.184). But cities themselves form parts of larger systems, drawing on and affecting vast hinterlands, and often affecting distant parts of the globe in their demand for resources. Only through deepening our understanding of these complex interactions, including industrial and urban ecology, can we hope for long-term sustainability.

Browse Our Earth Science 2017 Catalog

Our new Earth Science catalog features a host of new titles on subjects ranging from the new ecology of the Anthropocene era to the microscopic life forms that inhabit the world’s most extreme environments – browse the full catalog below:

The ancient Greek philosopher Heraclitus expressed his philosophy of perpetual change and flow with the words “No man ever steps in the same river twice.” In Where the River Flows, Sean W. Fleming takes us on a comprehensive scientific tour of rivers, the arteries of planet’s water system. Through the lens of applied physics, Fleming explores the rich interconnections between land, sky and biosphere represented by waterways as grand as the Mississippi and as modest as a backyard creek. No less capable a photographer than a writer, Fleming also provided the photograph of Lake Mead for the cover of the catalog.

Where the River Flows by Sean Fleming

In Deep Life, Tullis C. Onstott turns the spotlight on the extraordinary organisms that have been discovered living deep below the surface of the Earth, in locations where life was previously thought to be impossible. Onstott introduces us to bacteria living encased meters deep in solid rock, and plumbs the depths of subterranean lakes that have been cut off from the surface for millions of years. The burgeoning field of geomicrobiology is broadening our understanding of the limits of organic life and holds significant implications for the search for life on Mars.

Deep Life by Tullis Onstott

The scale of human impact on the ecology of our planet is now so extensive that our era is becoming known as the Anthropocene, the age in which human activity is the dominant influence on climate and the environment. Oswald J. Schmitz’s The New Ecology offers a concise guide to contemporary thinking in ecology, and the possibilities that it offers for responsible stewardship of the planet’s ecosystem for the benefit of future generations.

The New Ecology by Oswald J. Schmitz