Mark Serreze: The Value of Climate Science

 

Modern climate science is based on facts, physics and testable hypotheses. There is ample room for debate about what to do about climate change, but the underlying science is rock solid.

Modern climate science builds on a long track record of scientific inquiry on environmental and health issues that has benefited society. Through scientific analysis, it was discovered that DDT, widely used as a pesticide, was becoming concentrated in the food chain. As a result, laws were passed to curb its use. Tetraethyl lead was once added to gasoline to reduce engine knock. Through science, we learned that lead in the environment poses severe health hazards, so the use of lead in gasoline was consequently phased out. It was through science that we learned how CFCs were destroying stratosphere ozone. In turn, through many decades of research, we have developed a strong understanding of how the climate system works, how humans are affecting climate, and what is in store if society continues to follow its current path without taking corrective action.

Until the middle off the 20th century, climate science was pretty much a backwater. Climatologists, by and large, were bookkeepers, compiling records of temperature, precipitation and other variables. From these records, much effort was spent classifying climate types around the world, ranging from tropical rain forests to monsoons to semiarid steppes to deserts. Climate data certainly had value to farmers and the home gardener, civil and structural engineers and the military planning. But the focus was largely on statistics, with relatively little emphasis on climate dynamics – the processes that control the climate system and how it may evolve. There were notable exceptions, such as Svante Arrhenius, who, in the late 19th century, speculated on how rising concentrations of carbon dioxide would lead to warming, but for the most part, climatology was a largely descriptive and rather boring field of science.

The shift from simple bookkeeping to a more physically-based view of how the climate system works paralleled developments in meteorology—the science of weather prediction. The rapid advances in meteorology following the Second World War, in turn, largely paralleled the development of numerical computers. With computers, it became possible to translate the physical processes controlling weather systems into computer code. It was readily understood that the physics controlling weather were part of the broader set of physics that control climate, which led to the development of global climate models, or GCMs for short. GCMs were quickly seen as powerful tools to understand not just how the global climate system works, but how climate could change in response to things like brightening the sun or altering the level of greenhouse gases in the atmosphere.

Using early generation GCMs developed in the 1970, pioneers like Jim Hansen of NASA, and Suki Manabe of the Geophysical Fluid Dynamics Laboratory in Princeton confidently predicted that our planet was going to warm up, and that the Arctic would warm up the most, something that we now call Arctic amplification. But the more mundane chore of compiling climate records never stopped, and indeed, its value grew, for it was only with ever-lengthening climate records that it could be determined if things were actually changing. And as these records grew, it slowly became clear that the planet was indeed warming. From numerous GCM experiments, it also became clear that this warming, and all the things that go with it, such as the Arctic’s shrinking sea ice cover and Artic amplification, could only be explained as a response to rising levels of carbon dioxide in the atmosphere.

Climate scientists of today need to know:

  • The processes that can change how the earth absorbs and emits energy
  • How the atmosphere and weather systems work
  • How the atmosphere interacts with the oceans
  • How the atmosphere interacts with the land surface
  • And how the land interactions with the ocean.

But whatever our area of specialty, we all try and make contributions to our understanding, but those contributions are, to the best of our ability, based on facts, physics, and sound methodology. In science, there is no room for wishful thinking. As a society, need to get past partisan bickering, step back, and listen to what climate science is telling us: the climate is changing, we know why, and the implications must not be ignored. This is the value of climate science.

Mark C. Serreze is director of the National Snow and Ice Data Center, professor of geography, and a fellow of the Cooperative Institute for Research in Environmental Sciences at the University of Colorado at Boulder. He is the coauthor of The Arctic Climate System. He lives in Boulder, Colorado.

Oswald Schmitz: Earth Environmentalism & Jazz

Pop music icon Joni Mitchell’s song “Big Yellow Taxi”, released during the headiness of the first Earth Day, ranks among the top anthems of the 1970’s environmental movement. With lyrics such as “They took all the trees and put them in a tree museum,” and, “They paved paradise and put up a parking lot,” it rebuked what humans were doing to nature in the interest of what was popularly deemed to be progress. The refrain, “Don’t it always seem to go that you don’t know what you’ve got ’till it’s gone,” adds a wistfulness for all that is lost in the name of such progress.

The song has a timeless ring given what humans are continuing to do to nature today. More than half of the global human population now lives in paved urban areas. And by all indicators, that number likely will grow to become two thirds of all humans, or even more, by mid century. It seems that there is no end in sight to humankind’s drive to pave-over nature. Indeed, the numbers of species that stand to be endangered in the name of such progress seems unconscionable. It is not surprising, therefore, that those who are committed to speak up for those species and champion their protection might become disillusioned. It seems that all we can do in the face of this unstoppable wave of global urbanization is to sing the blues, lamenting all those species that will surely go extinct, all the while losing hope that things will change.

Yet, this needn’t be a foregone outcome. Changing ways, however, require a shift in mindset about how we build urban environments. We need to stop simply being expedient by taking away all the trees, paving-over nature, and building from scratch. Instead we can and should capitalize on human ingenuity and creativity, to take care to design and build urban areas in ways that complement nature’s aesthetic and embrace its functional properties.

Take for instance a place that is near and dear to me: located a mere fifteen-minutes from where I live is part of an urban greenspace in which a river flows through a heavily treed landscape squarely in the middle of the city and several adjoining towns. I find it magical every time I step into the river at the crack of dawn, balancing against the surge of water pressure around my legs as I begin fly-fishing. I always take a moment and look up into the bordering forest to admire the kaleidoscope caused by the flecks of rising sunlight penetrating the small gaps within the dense forest canopy. The rising sun is nature’s alarm clock. There is not a person in sight, anywhere. The only sound comes from the singing birds, the flowing water, and me, breathing. Standing alone in this stretch of the river lets me forget my worries and reflect on what is good in life, including being lucky enough to have nature so close at hand.

One of the most important dividends of having healthy ecosystem functioning is the delivery of abundant, clean water. Forests on hillsides surrounding water bodies like my urban river play an important role in the delivery of clean water. By rooting to different depths in the soil, different tree species together prevent the soil from being compacted, which allows water to infiltrate and replenish soil moisture that eventually seeps down into the river. By rooting in the soil, trees prevent soil erosion during run-off events, which prevents the river from becoming murky with suspended soil particles. Such natural water treatment can help municipalities offset hundreds of millions of dollars in capital costs that would otherwise be needed to build water treatment facilities. Natural water treatment also offsets taxpayer funded water filtration costs that can run between hundreds of thousands to millions of dollars per year, depending on how much urban nature exists.

Encouraging nature as part of the urban built environment has benefits as well. Roadway trees creating urban forests filter out air pollutants such as ozone, nitrogen, and sulfur dioxides, and small particulates that cause respiratory ailments. They also provide natural air conditioning by cooling urban areas through shading. This in turn prolongs the life of infrastructure like paved roadways. It also reduces the need for energy generation that would normally be used to cool buildings and thereby reduces emissions of greenhouse gasses and air pollutants that accompany that energy generation. Urban trees help storm-water percolate into soils rather than run-off across impervious surfaces to flood urban drainage systems and watercourses, thereby reducing the concentrations of pollutants in the water supply. Estimates indicate that the value of these services to a given city could again amount to hundreds of thousands to millions of dollars. The replacement value of the trees alone can reach hundreds of millions of dollars, even after accounting for maintenance costs including tree pruning and removal, leaf pick-up and disposal, and utility-line clearing.

Urban trees offer personal health benefits as well. People living in neighborhoods with high densities of roadway trees are characterized as having higher perceptions of personal physical and mental health, of feeling younger, and of having lower incidence of cardiac and metabolic ailments than people living in the same city but in neighborhoods with fewer trees. It also encourages people to eat healthier diets, especially less meat and more servings of vegetables, fruits and grains. These health indicators persist even after accounting for differences in socio-economic factors and age. Estimates show that these lifestyle effects are equivalent to having $10,000 more in personal annual income.

The rise in urban ecological science is heralding a new era to help urban planners think more creatively about nature-informed design. Some of that creativity may come from combining natural features—such as varieties of plants with different physical structures that complement each other in their functioning—into new kinds of construction processes. Green roofs, roofs of buildings that are covered by all variety of plant species in a growing medium, are one such example. Bioswales are another. These gently sloping landscaping elements create a drainage course—a modified ditch or local depression—that is filled with natural vegetation or compost. They are usually built alongside streets or in parking lots. They collect and hold water from surface runoff to filter out silt and pollutants, thereby cleaning the water before it eventually enters a city’s storm-water sewer system.

Humanity’s influence on the Earth is forcing us to stretch our collective imagination into many realms that we have never considered before. But we have considerable scientific knowhow to support human ingenuity and thus meet the challenge of devising creative new ways to protect all the jazz. Designed landscapes change microclimates, flows and concentrations of water and nutrients, and emissions and concentration of pollutants. Hence thoughtful design must ensure that these changes lead to positive functional outcomes. Planted landscaping can even build natural habitats for many species thereby creating opportunity to lower their endangerment, as nature gets paved-over. But it requires thinking hard about the exact kinds and ways of creating habitats and how they are spatially arranged. At a minimum, that knowledge tells us that we should keep the trees whenever we pave paradise and put up a parking lot.

Oswald J. Schmitz is the Oastler Professor of Population and Community Ecology in the School of Forestry and Environmental Studies at Yale University.

Eelco Rohling: A view from the ocean for Earth Day

On April 22, we celebrate Earth Day. Mostly, we use this holiday to demonstrate support for environmental protection.

The oceans cover some 72% of Earth’s surface; this is why we sometimes call the Earth the “Blue Planet.” Yet, in a time when people are talking about “the best deals,” the oceans are getting an extremely shoddy one.

Humanity is stretching the global oceanic ecosystem to its limits. Major impacts come from global overfishing, and from the physical destruction of critical pristine environments such as coral reefs and mangrove coasts. Combined, these reduce species diversity and richness, as well as breeding potential and resilience to disease. Our impacts on coastal systems are also strongly reducing the natural protection against wave- and storm-damage. We’d be wise to be more appreciative of, and careful with, our key food supplies and protection from the elements. After all, with 7 billion of us to feed, and with almost half of these people living within 100 miles from the sea, we have it all to lose.

Yet our deal with the oceans is even worse than that. That’s because the oceans also get to be the end-station for everything transported by water, which includes plastics as well as toxic chemicals. To boot, we have for many decades unceremoniously dumped vast quantities of society’s unwanted waste products directly into the oceans. Although legal frameworks have been introduced to limit dumping directly into the sea, illegal practices are still rife. In addition, indirect dumping via rivers—whether wittingly or unwittingly—remains a major headache.

As a result of our wasteful demeanour, we are leaving a legacy of oceans (and wildlife) that are visibly filling up with long-lived non-biodegradable plastics, which leads to graphic news coverage. In consequence, plastic pollution is now being billed by some as our oceans’ biggest threat today. It’s certainly a very visible one, with up to 240,000 tons of plastic floating in the oceans. And that amount is equal to only 1% or less of the amount of plastic that is available for entering the ocean every year. This illustrates the massive potential for the plastic problem to explode out of control.

Much less visible, but just as devastating, is the pollution of our oceans with highly toxic and long-lived chemicals—especially human-made PCBs and other organic compounds, along with concentrated heavy metals. PCBs are among the very worst threats because they are so long-lived and so toxic.

Some 10% of all 1.3 million tons of PCBs produced have made it into the oceans already (that is, about 130,000 tons). While this is alarming enough by itself, there’s up to 9 times as much waiting to be released and make its way into the oceans. All we can do to stop that from happening, is prevent any stored PCBs from making it into the open environment. So far, this has been done to 17% of the stores, while 83% have yet to be eliminated.

PCBs have become widespread in marine organisms, from coastal and estuarine waters to the greatest depths of the largest ocean: the Pacific. They cause an endless list of severe health problems, deformities, hormonal unbalance, immune-system weakening, cancer, and a decrease in fertility. Like most long-lived pollutants, PCBs accumulate into higher concentrations through the food web. Their accumulated impacts in whales already drive important infant mortality, as females pass lethal amounts of PCBs to unborn or suckling calves.

Nutrient-pollution is another big issue. This may sound like a strange type of pollution. After all, wouldn’t more nutrients just lead to more happy life in the ocean? When nutrients come in reasonable amounts, then the answer is yes. But when the nutrient flux is excessive—we then talk about eutrophication—all manner of problems develop. And the flux of artificial and human and animal waste-derived nutrients is excessive in many estuaries and coastal regions. Together with ocean warming, this has caused a rapid global expansion of regions where decomposition of massive algal blooms strips all oxygen from the waters, resulting in vast “dead zones” with completely collapsed ecosystems.

Finally, there is the sinister, lurking threat of global warming and ocean acidification. The current rate of warming has been successfully documented through scientific study, and is 10 to 100 times faster than ever before in the past 65 million years. Meanwhile, ocean acidification is caused by the oceans absorbing roughly a third of our carbon emissions. By now, the oceans have become about 0.1 pH unit more acidic than they were before the industrial revolution; that is an acidity increase of 25%. Projections for a business-as-usual emissions trajectory show a 0.3 to 0.4 pH unit change by 2100. In humans, a 0.2 pH unit change results in seizures, coma, and death. Fish, and most other vertebrates, are equally sensitive.

If the changes are slow enough, organisms can evolve to adapt. But researchers are very concerned about the extreme rate of acidification. For coral reefs, the combination of warming and acidification is certainly implicated in massive bleaching and die-off events that are going on around the world already. And let’s not forget that coral reefs house one third of all oceanic biodiversity, while oceans cover more than two thirds of the Earth surface.

The Oceans, by Eelco RohlingSo here’s my plea

We really need an Earth Day, but we need an Ocean Day as well—to build awareness about  this critical part of our planet.

At a passing glance, the oceans’ problems remain hidden under a mesmerising veil of waves and reflections. We need to remind ourselves to keep looking beneath the surface, and to keep taking this critical system’s pulse, lest it dies without us knowing about it. Maybe then we will realise how urgently we need to stop using it as a dumping ground and infinite food larder. That we instead should look for sustainable ways forward, not just for life on land, but also for life in the oceans.

Our attitude going forward will make or break society. Chances are very high that a marine mass extinction will drag us, the ultimate overpopulated top consumer, along with it.

Eelco J. Rohling is professor of ocean and climate change in the Research School of Earth Sciences at the Australian National University and at the University of Southampton’s National Oceanography Centre Southampton.

PUP champions scientific research with March for Science 2018

Princeton University Press’s mission is to bring scholarly ideas to the world. We publish books that connect authors and readers across spheres of knowledge to advance and enrich the human conversation. We embrace the highest standards in our publishing as embodied in the work of our authors from Albert Einstein in our earliest years to the present. In keeping with our commitment to serve the nation and the world with top-notch science publishing, we’re excited to announce that we will be partnering with The March for Science on April 14 in Washington, DC.

From the March for Science mission statement:

The March for Science champions robustly funded and publicly communicated science as a pillar of human freedom and prosperity. We unite as a diverse, nonpartisan group to call for science that upholds the common good, and for political leaders and policymakers to enact evidence-based policies in the public interest.

  • We believe that the scientific method, and findings that result from its responsible use, are powerful tools for decision-making.
  • We integrate our commitment to diversity, equity, accessibility, and inclusion into all programming, outreach, and advocacy efforts.
  • As nonpartisan political advocates, we act with the understanding that science does not belong to any political party, and that scientific evidence is an essential part of good policymaking at every level of government.
  • We do not merely react to the problems of today: we look forward, aspiring toward an inclusive, integrated vision for the future of science and science policy.
  • We are a reflective and self-critical organization that prizes ongoing internal evaluation and correction.

Read the full statement here.

In our politicized world, the application of science to policy is not a partisan issue. Like the March for Science, Princeton University Press is proud to support engagement with scientific research through education, communication, and ties of mutual respect between scientists and their communities.

Mark Serreze on Brave New Arctic

In the 1990s, researchers in the Arctic noticed that floating summer sea ice had begun receding. This was accompanied by shifts in ocean circulation and unexpected changes in weather patterns throughout the world. The Arctic’s perennially frozen ground, known as permafrost, was warming, and treeless tundra was being overtaken by shrubs. What was going on? Brave New Arctic is Mark Serreze’s riveting firsthand account of how scientists from around the globe came together to find answers. A gripping scientific adventure story, Brave New Arctic shows how the Arctic’s extraordinary transformation serves as a harbinger of things to come if we fail to meet the challenge posed by a warming Earth.

Why should we care about what is going on in the Arctic?

The Arctic is raising a red flag. The region is warming twice as fast as the globe as a whole. The Arctic Ocean is quickly losing its summer sea ice cover, permafrost is thawing, glaciers are retreating, and the Greenland ice sheet is beginning to melt down. The Arctic is telling us that climate change is not something out there in some vague future. It is telling us that it is here and now, and in a big way. We long suspected that as the climate warms, the Arctic would be leading the way, and this is exactly what has happened.

There are a lot of books out there on the topic of climate change. What makes this one different and worth reading?

I wanted to get across how science is actually done. Scientists are trained to think like detectives, looking for evidence, tracking down clues, and playing on hunches. We work together to build knowledge, and stand on the shoulders of those who came before us. It a noble enterprise, but a very human one as well. We sometimes make mistakes (I’ve made a few doozies in my time) and get off the rails. Too often, science gets twisted up with politics. I tell it like it is, as a climate scientist who was there back when the Arctic was just beginning to stir, and both watched and participated in the story of the changing north.

You’ve hinted about how growing up in Maine got you interested in snow and ice. Can you tell us a little about this?

I grew up in coastal Maine in the 1960s and 1970s when there were some pretty impressive winters. Winter was my favorite season. I was way into daredevil sledding, and spent countless hours building the iciest, slickest track possible and modifying my sled for maximum speed. I developed a reputation for building tremendous snow forts with five or six rooms connected by tunnels. We’d would go crawling through the tunnels at night and light candles in each room. Then there was the simple primal joy of watching a big Nor’easter snowstorm come through and grind commerce to halt. The craziest winter activity I got into with my sister Mary and friend Dave was riding ice floes on the Kennebunk River. I probably should have drowned several times over, but, in retrospect, I learned a lot about the behavior of floating ice. Now, this was all back in an era when most of us were free-range kids—my mom would say, “get out of the house, I don’t want to see you ‘til dinner.” So you made your own fun and it wasn’t always safe. But it prepared me very well for a career studying snow and ice.

It took you quite a few years to be convinced of a human role in climate change. Why so long?

As mentioned, scientists are detectives, and we are always weighing the evidence. For me, it was never a question of if we would eventually see the human imprint of climate change in the Arctic—the basic physics behind greenhouse warming had been understood as far back as the late 19th century. Rather, it was a question of whether the evidence was solid enough to say that the imprint had actually emerged. The challenge we were up against is that natural variability is quite strong in the Arctic, the system is very complex, and most of the climate records we had were rather short. By the late 1990s, it was clear that we were seeing big changes, but at least to me, a lot of it still looked like natural variability. It was around the year 2002 or 2003 that the evidence became so overwhelming that I had to turn. So, I was a fence sitter for a long time on the issue of climate change, but that is how science should work. We are trained to be skeptical.

What happened in the year 2007?  Can you summarize?   

In the early summer of 2007, sea ice extent was below average, but this didn’t really grab anyone’s attention. That quickly changed when ice started disappearing at a pace never seen before. Through July and August, it seemed that the entire Arctic sea ice community was watching the daily satellite images with a growing sense of awe and foreboding. Huge chunks of the ice were getting eaten away. By the middle of September, when it was all over, the old record low for sea ice hadn’t just been beaten, it had been blown away. There was no longer any doubt that a Brave New Arctic was upon us. Arctic climate science was never really the same after that.

We keep hearing about how science tends to be a male-dominated field. But the impression that one gets from your book is that this isn’t really the case in climate research. Can you comment?

I don’t know what the actual numbers look like in climate science versus, say, computer science, but in my experience,  when it comes climate research, nobody really cares about your gender. What’s important is what you know and what you can contribute. What you do see, certainly, is more female graduate students now coming through the system in STEM fields (Science, Technology, Education, Mathematics).

Are you frustrated by the general inaction, at least in the United States, to deal with climate change? 

I’m constantly amazed that we don’t take the issue of climate change more seriously in this country. We are adding greenhouse gases to the air. The climate is warming as a result. The physics are well understood. Just as expected, the Arctic is leading the way. Sure, there are uncertainties regarding just how warm it well get,  how much sea level will rise, and changes in extreme events, but we know plenty about what is happening and where we are headed. The costs of inaction are going to far outweigh the costs of addressing this issue.

Mark C. Serreze is director of the National Snow and Ice Data Center, professor of geography, and a fellow of the Cooperative Institute for Research in Environmental Sciences at the University of Colorado at Boulder. He is the coauthor of The Arctic Climate System. He lives in Boulder, Colorado.

Mark Serreze: Becoming A Scientist

In honor of Earth Day, Princeton University Press will be highlighting the contributions that scientists make to our understanding of the world around us through a series of blog posts written by some of our notable Earth Science authors. Keep a look out for this series all month long.

Mark Serreze, investigating the pressure ridges in the Arctic.

What is it that leads someone to become a scientist? It varies, but from what I’ve seen, it’s often a combination of nature and nurture. Just as some people seem to have an inherent knack for writing making music, or cooking, I think that some of us are wired to become scientists. In turn, there is often someone we can look back to—parents or perhaps a teacher—that encouraged or inspired us to pursue a science career.

I had an interest in science from when I was very young, and I was always full of questions about the natural world. The first book I ever owned is “The Golden Book of Science” 1963 edition—featuring 1-2 page essays on everything from geology to insects to the weather. Each night, at my insistence, my mother would read one of them to me. To this day, I still own the book.

When I wasn’t reading, I could spend hours outside marveling at the organized industriousness of ants as they built their anthills, or looking at colorful rocks with a magnifying glass. I was enthralled with the burgeoning manned space flight program, and, sitting beside my mother and staring at the black TV while she ironed clothes, watched in awe at the Project Gemini rocket launches.   

As for the nurture part, I had an advantage in that both of my parents were chemists with Master’s degrees. This was at a time it was quite unusual for women to hold advanced degrees. They met in the laboratory. Mom was a whiz when it came to thermodynamics, and Dad apparently knew everything there was to know about acrylic plastics. Ours was indeed an odd household. While my siblings and I chafed under a rather strict Catholic upbringing, at the same time we were very much free-range kids, and scientific experimentation of all sorts was quite acceptable.  

At one point, after getting a chemistry set for Christmas, I thought I might become a chemist myself. These were not the boring, defanged chemistry sets of today – back then, they included chemicals that, when properly mixed, yielded career-inspiring reactions. I later got heavily into model rocketry, astronomy, and civil engineering, building small dams across the stream running past our house to improve the habitat for the frogs. Included among the more foolish (albeit highly educational) endeavors was a scientifically-based experiment on the feasibility of riding ice floes down the Kennebunk River. Then there was the time when an experiment in pyrotechnics gone wrong ended up with a frantic call to the fire department to douse a five-acre conflagration in the neighbor’s field.

Years before I ever got into college I knew I was going to be a research scientists of some type, for, through nature and nurture, the roots were already there. As I talk about in my book, Brave New Arctic, a number decisions and events came together – mixed with some blind, dumb luck – to eventually steer me towards a career in climate science. What I could never have foreseen is how, through these events and decisions, and then through 35 years of research, I’d find myself in the position to tell the story about the dramatic transformation of the North.

Climate scientists, like myself, have to deal with an added challenge that climate change is a highly polarized subject. There are the frequent questions from the media: Will there be a new record low in Arctic sea ice extent this year? Why does it matter? Why is the Arctic behaving so differently than the Antarctic? It can be overwhelming at times. Then there are the emails, phone calls and tweets from those who simply want to rant. While I get a lot of emails from people fully on board with the reality that humans are changing the climate and want to get straight answers about something they’ve heard or read about, I also have a growing folder in my inbox labeled “Hate Mail”. Some very unflattering things have been said about me on social media and across the web. I’ve had to grow a thick skin.  

Making a career as a research scientist is not for everyone. Science is not the sort of thing that is easy to put aside at the end of the day. It gnaws at you. The hours are long, and seldom lead to monetary riches. It can also be a frustrating occupation, such as when realizing that, after months of research pursuing a lead, you’ve hit a dead end.

We chose to be scientists because it’s what we love to do. We live for those “aha” moments when the hard work pays off, and we discover something new that advances our understanding.

In writing this book I was forced to dig deeply to understand my own evolution as a scientist, and to document insights from other scientists who, like me, were there at the beginning when the Arctic still looked like the Arctic of old. It’s been an adventure, and when I someday retire (which is a very hard thing for scientists to do,) I hope to be able to look back and say that that this book opened some eyes, and inspired others to follow their own path to becoming a scientist.

 

Mark Serreze is director of the National Snow and Ice Data Center, professor of geography, and a fellow of the Cooperative Institute for Research in Environmental Sciences at the University of Colorado at Boulder. He is the coauthor of The Arctic Climate System. He lives in Boulder, Colorado.

Celebration of Science: A reading list

This Earth Day 2017, Princeton University Press is celebrating science in all its forms. From ecology to psychology, astronomy to earth sciences, we are proud to publish books at the highest standards of scholarship, bringing the best work of scientists to a global audience. We all benefit when scientists are given the space to conduct their research and push the boundaries of the human store of knowledge further. Read on for a list of essential reading from some of the esteemed scientists who have published with Princeton University Press.

The Usefulness of Useless Knowledge
Abraham Flexner and Robbert Dijkgraaf

Use

The Serengeti Rules
Sean B. Carroll

Carroll

Honeybee Democracy
Thomas D. Seeley

Seeley

Silent Sparks
Sara Lewis

Lewis

Where the River Flows
Sean W. Fleming

Fleming

How to Clone a Mammoth
Beth Shapiro

Shapiro

The Future of the Brain
Gary Marcus & Jeremy Freeman

Brain

Searching for the Oldest Stars
Anna Frebel

Frebel

Climate Shock
Gernot Wagner & Martin L. Weitzman

Climate

Welcome to the Universe
Neil DeGrasse Tyson, Michael A. Strauss, and J. Richard Gott

Universe

The New Ecology
Oswald J. Schmitz

Schmitz

5 Myths About Sustainability

On Earth Day and everyday we all need to focus on ways to be more environmentally conscious and responsible. In Pursuing Sustainability: A Guide to the Science and Practice, Pamela Matson, William C. Clark, and Krister Andersson draw on the most up-to-date science to provide a handy guide that links knowledge to action. In the process, they debunk commonly held misconceptions about sustainability. The first step in affecting positive change is awareness:

1. Sustainability challenges are largely a problem of consumption.
In meeting the challenges posed by implementing sustainable practices, production and consumption should be viewed as parts of an integrated system. Demand may drive production, but production can influence consumption by creating a demand where there was none previously. (Pg. 16).

2. As we move toward more sustainable practices, precedence should be given to the environment; humans should be considered as negative pressures that put ecosystems at risk.
To meet the goals of sustainable development, there needs to be an integrated appreciation and understanding of the social-environmental systems that we are operating in or any solutions will be unbalanced and fall apart over the long-term (Pg. 53).

3. Better policies and technologies are all that is needed to meet the environmental challenges ahead.
The complexity of social-environmental systems means that we cannot always predict the consequences of new technologies or policies. The pursuit of sustainability has to be an adaptive process in which we try the best possible solutions, moniter the results, and make adjustments as needed (Pg. 64).

4. GDP (Gross Domestic Product) and GNI (Gross National Income) are useful metrics when considering sustainability.
Both of these measures do not take important elements into account. First, they measure flows (what is happening now) rather than stocks or assets (what’s left to draw on in the future). They also fail to recognize and integrate the social and environmental as well as the economic determinants of well-being. To achieve an accurate sense of how we are doing in regard to sustainability, other measures and indicators that are more inclusive and broad-ranging are needed (Pg. 76).

5. Implementing sustainable practices means sacrificing profits.
Not necessarily. When taking into account social-environmental systems, sustainable solutions can actually save money. For examples of sustainability success stories that aided in, rather than hindering, economic goals, see Chapter 6 of Pursuing Sustainability.

As we work to meet the challenges posed by climate change and environmental vulnerability, it is important to educate ourselves so that we can arrive at solutions that will work over the long term. This Earth Day, Pamela Matson, William C. Clark, and Krister Andersson’s book is necessary reading.

Earth Day 2015

This year we will be celebrating the 45th anniversary of the environmental movement, Earth Day. Gaylord Nelson, a former U.S. Senator from Wisconsin, founded Earth Day to inform the public on the importance of a healthy Earth. Earth Day has since evolved to focus on global warming and clean energy. Learn more about the history of Earth Day, here. To celebrate the day, we have compiled a book list.

Climate Shock Climate Shock: The Consequences of a Hotter Planet

Gernot Wagner & Martin L. Weitzman

Climate Shock analyzes the repercussions of a hotter planet. The authors take a stance that climate change can and should be dealt with. Climate Shock depicts what could happen if we don’t deal with the environment. “This informative, convincing, and easily read book offers general audiences the basic case for global climate mitigation.” –Ian Perry, Finance & Development

Read Chapter 1.

How to Clone a Mammoth How to Clone a Mammoth: The Science of De-extinction

Beth Shapiro

Could extinct species, like mammoths and passenger pigeons, be brought back to life? The science says yes. Beth Shapiro explains the process of De-extinction, what species should be restored, and anticipating how revived populations might be seen in the wild. Shapiro argues that the overarching goal should be the revitalization and stabilization of contemporary ecosystems. “[A] fascinating book…A great popular science title, and one that makes it clear that a future you may have imagined is already underway.” —Library Journal, starred review

Check out our behind-the-scenes, #MammothMonday blog posts.

Read Chapter 1.

OffShore Sea ID Guide Offshore Sea Life ID Guide: West Coast

Steve N.G. Howell & Brian L. Sullivan

Released in May, this Offshore Sea Life ID Guide, is designed for quick use on day trips off the West Coast. Color plates show species as they typically appear at sea, and expert text highlights identification features. “Filled with concise information and accurate illustrations, this terrific field guide will be a handy, quick reference for the layperson and serious naturalist on boat trips off the West Coast of the United States. No other useful guides for this region deal with both marine mammals and seabirds in the same book.” –Sophie Webb, coauthor of Field Guide to Marine Mammals of the Pacific Coast

Wilson-Rich_theBee The Bee: A Natural History

Noah Wilson-Rich

With contributions from Kelly Allin, Norman Carreck & Andrea Quigley

Bees pollinate more than 130 fruit, vegetable, and seed crops that we rely on to survive. They are crucial to the reproduction and diversity of flowering plants, and the economic contributions of these irreplaceable insects measure in the tens of billions of dollars each year. Noah Wilson-Rich and his team of bee experts provide a window into the vitally important role that bees play in the life of our planet. “A well-illustrated introduction to the biology of bees.” –Ian Paulsen, Birdbooker Report

Check out 10 Bee Facts from the book, here.

Read the Introduction.