A Big Deal: Organic Molecules Found on Mars

by David Weintraub

MarsIn 1976, both Viking 1 and Viking 2 touched down on the surface of Mars. Both landed on vast, flat plains, chosen because they were ideal locations for landing safely. Perhaps the most important Viking experiment for assessing whether life could exist on Mars was the gas chromatograph and mass spectrometer (GCMS) instrument, built by a team led by Klaus Biermann of MIT. Ultimately, Biermann and his GCMS team reported a definitive answer: “No organic compounds were found at either of the two landing sites.” None, nada, zilch.

This scientific discovery had enormous importance for our understanding Mars. Summing up what we learned from the Viking missions in 1992, and in particular what we learned from the absence of any organics in the sampled Martian soil, a team of Viking scientists wrote, “The Viking findings established that there is no life at the two landing sites.” Furthermore, because these two sites were thought to be extremely representative of all of Mars, they concluded that this result “virtually guarantees that the Martian surface is lifeless everywhere.” 

If Mars is sterile, then SpaceX and NASA and Blue Origin and Mars One can all move forward with their efforts to land colonists on Mars in the near future. They needn’t wrestle with any ethical issues about contaminating Mars.

Fast forward a generation. In a paper published in Science last week, Jennifer Eigenbrode and her team, working with data collected by the Mars Science Laboratory (i.e., the Curiosity rover), report that they discovered organic molecules in Martian soil. The importance of this discovery for the possible existence of life on Mars is hard to overstate. The discovery of organics on Mars is a BIG deal.

Let’s be careful in discussing organic molecules. An organic molecule must contain at least one carbon atom and that carbon atom must be chemically bonded to a hydrogen atom. All life on Earth is built on a backbone (literally) of organic molecules (DNA). And life on Earth can produce organic molecules (for example, the methane that is produced in the stomachs of cows). But abiological processes can also make organic molecules. In fact, the universe is full of such molecules known as PAHs (polycyclic aromatic hydrocarbons), which are found in interstellar clouds and the atmospheres of red giant stars and which have absolutely nothing to do with life.

Repeat: the presence of organic molecules on Mars does not mean life has been found on Mars. The absence of organic molecules in the Martian soil, as discovered in the Viking experiments, however, almost certainly means “no life here.” 

Were the Viking scientists wrong? Yes, in part. Their conclusion that the plains of Mars are representative of every locale on Mars was an overreach. When assessing whether the environment on Mars might be hospitable to life, local matters. That conclusion shouldn’t surprise anyone. After all, we find significant differences on Earth between the amount and kinds of life in the Mojave Desert and the Amazon River basin. Why? Water.

The vast, flat plains of Mars are free of organics, but they are unlike Gale Crater. Gale Crater was once a lake, full of water and dissolved minerals. We know now that certain locations on Mars that were warm and wet for extended periods of time in the ancient past have preserved a record of the organic molecules that formed in those environments.

Could life have played a role in creating these molecules?  Maybe, but we don’t know, yet. We do know, however, where to keep looking. We do know where to send the next several generations of robots. We do know that we should build robotic explorers that can drill deep into the soil and explore caves in places similar to Gale Crater.

Abigail Allwood, working at NASA’s Jet Propulsion Laboratory, is building a detector called PIXL that will be sent to Mars on a rover mission that is scheduled for launch in 2020. PIXL will be able to make smart decisions, based on the chemistry of a rock, as to whether that rock sample might contain ancient, fossilized microbes. A later mission might retrieve Allwood’s PIXL specimens and bring them back to Earth for more sophisticated laboratory studies. With instruments like PIXL, we have a good chance of definitively answering the question, “Does Mars or did Mars ever have life?”

What does the presence of organic molecules in the Martian regolith mean, as discovered by Curiosity? Those molecules could mean that life is or once was present on Mars. Finding those molecules just raised the stakes in the search for life on Mars. The jury is still out, but the betting odds just changed.

Given all we currently know about Mars, should we be sending astronauts to Mars in the next decade? Do we have the right to contaminate Mars if is already home to native Martian microbes? These are important questions that are more relevant than ever. 

David A. Weintraub is professor of astronomy at Vanderbilt University. He is the author of Life on Mars: What to Know Before We GoReligions and Extraterrestrial Life: How Will We Deal with It?How Old Is the Universe?, and Is Pluto a Planet?: A Historical Journey through the Solar System. He lives in Nashville.

Just in time for Pi Day, presenting The Usefulness of Useless Knowledge

In his classic essay “The Usefulness of Useless Knowledge,” Abraham Flexner, the founding director of the Institute for Advanced Study in Princeton and the man who helped bring Albert Einstein to the United States, describes a great paradox of scientific research. The search for answers to deep questions, motivated solely by curiosity and without concern for applications, often leads not only to the greatest scientific discoveries but also to the most revolutionary technological breakthroughs. In short, no quantum mechanics, no computer chips. This brief book includes Flexner’s timeless 1939 essay alongside a new companion essay by Robbert Dijkgraaf, the Institute’s current director, in which he shows that Flexner’s defense of the value of “the unobstructed pursuit of useless knowledge” may be even more relevant today than it was in the early twentieth century. Watch the trailer to learn more:

The Usefulness of Useless Knowledge by Abraham Flexner from Princeton University Press on Vimeo.

The search for deep life on Earth… and what it means for Mars

Onstott_Deep LifeThe living inhabitants of the soil and seas are well known to biologists. We have long studied their food chains, charted their migration, and speculated about their evolutionary origins. But a mile down an unused tunnel in the Beatrix mine in South Africa, Tullis C. Onstott, Professor of Geosciences at Princeton and author of Deep Life, is on a quest for mysterious bacteria and microbes that require neither oxygen nor sun to survive. When they open up an old valve, water full of microbes and even little worms flows—a discovery with stunning implications. The New York Times has chronicled Onstott’s research in a feature that asks, was there ever life on Mars? And could it still exist far below the surface? That organisms are nourished by our own earth’s core, thriving in darkness encased in hard rock provides major insights:

The same conditions almost certainly exist on Mars. Drill a hole there, drop these organisms in, and they might happily multiply, fueled by chemical reactions in the rocks and drips of water.

“As long as you can get below the ice, no problems,” Dr. Onstott said. “They just need a little bit of water.”

But if life that arose on the surface of Mars billions of years ago indeed migrated underground, how long could it have survived, and more to the point, how can it be found? Kenneth Chang writes:

If life is deep underground, robotic spacecraft would not find them easily. NASA’s InSight spacecraft, scheduled to launch in 2018, will carry an instrument that can burrow 16 feet into the ground, but it is essentially just a thermometer to measure the flow of heat to the surface. NASA’s next rover, launching in 2020, is largely a clone of Curiosity with different experiments. It will drill rock samples to be returned to Earth by a later mission, but those samples will be from rocks at the surface.

In the meantime, what can we learn deep in Earth’s mines? What do we know now about the energy required to sustain life underground? As Chang notes, if Beatrix is a guide, methane could be the answer:

As NASA’s Curiosity rover drove across Gale Crater a couple of years ago, it too detected a burp of methane that lasted a couple of months. But it has not detected any burps since.

Perhaps an underground population of methanogens and methanotrophs is creating, then destroying methane quickly, accounting for its sudden appearance and disappearance from the atmosphere. If Beatrix is a guide, the methane could be providing the energy for many other microbes.

Conventional wisdom is that Martian life, if it exists, would be limited to microbes. But that too is a guess. In the South African mine, the researchers also discovered a species of tiny worms eating the bacteria.
“It’s like Moby Dick in Lake Ontario,” Dr. Onstott said. “It was a big surprise to find something that big in a tiny fracture of a rock. The fact it would be down there in such a confined space slithering around is pretty amazing.”

A full account of Dr. Onstott’s work appears in the New York Times feature, Visions of Life on Mars in Earth’s Depths.

Read more about Deep Life: The Hunt for the Hidden Biology of Earth, Mars, and Beyond here.