Victor Olgyay: Architecture is the cause and solution to climate related problems

design with climatePrinceton University Press has just reprinted Design with Climate: Bioclimatic Approach to Architectural  Regionalism, by Victor Olgyay, more than 50 years after its initial printing in 1963. Design with Climate describes an integrated design approach that remains a cornerstone of high performance architecture.

Victor Olgyay (1910-1970) was associate professor in the School of Architecture and Urban Planning at Princeton University. He was a leading researcher on the relationship between architecture, climate, and energy. His son, Victor W. Olgyay, is an architect and principal at Rocky Mountain Institute and was instrumental in reissuing this book. For this updated edition, he commissioned four new essays that provide unique insights on issues of climate design, showing how Olgyay’s concepts work in contemporary practice. Ken Yeang, John Reynolds, Victor W. Olgyay, and Donlyn Lyndon explore bioclimatic design, eco design, and rational regionalism, while paying homage to Olgyay’s impressive groundwork and contributions to the field of architecture.

Victor W. Olgyay spoke to Molly Miller about Design with Climate then and now.

Did Design with Climate change design when it came out in 1963?

VO: It wasn’t really very popular in the United States when it came out, but it soon became genuinely popular in South America. Our whole family moved to Colombia, South America, so my father could teach bioclimatic design there. He did research with his students using local climate zones and generated very interesting regional designs and published different versions of Design with Climate in Colombia and Argentina. This was in 1967-70. There are still clandestine editions in Spanish and Portuguese floating around, as well as in my fathers’ archives at Arizona State University.

My father died on Earth Day, April 22, 1970. Soon afterwards the 1973 oil embargo began and energy became a serious topic. That’s when Design with Climate caught people’s attention in the US because here was a book showing architects how they could respond to critical contemporary issues. Design with Climate suddenly was adopted in dozens of schools of architecture in the US and became a popular textbook. The broad popularity of the book had to do with Earth Day and with the oil crisis, but in the architecture community it was seen as a keystone helping bridge the emerging environmental architecture movement and analytic regionalism. That’s when it began to affect how architects approach design.

What is bioclimatic design?

VO: My father coined the term “bioclimatic design.” Bioclimatic design uses nature’s energies to harmonize buildings with local conditions. The physics of the environment, such as solar radiation and the convection of wind are employed as formal influences to create a climate balanced design. A diagram in the book shows four interlocking circles: biology, climatology, technology, and architecture. The lines of the circles are soft multi-layered lines, emblematic of the riparian merging of these disciplines. Bioclimatic design takes these disciplines and considers them together. For me this is the approach of a polymath, where when you consider things from different worlds together, you learn something completely new. You have insights you wouldn’t have gotten if they were isolated.

Screen Shot 2015-10-22 at 2.53.49 PM
In this model, people are at the center of the diagram. Biology addresses people’s needs for thermal and visual comfort. Synthesizing these disciplines results in a superior architecture. My father believed architecture’s ultimate purpose is to provide a place for the human spirit to lift, and support the human endeavor.

On a more practical level, a large part of this book is devoted to a design process. What if climate informs the design? How can you optimize nature and apply it to buildings?

VO: What’s really different about this approach is that my father looked carefully at how these fields are inter-related and did the analysis. This process is shown in the book. He took fairly complicated data about climate and made it into manageable design steps. He advocated working with climate to reduce energy use by orientation, shading, natural ventilation etc. In one example, he used wind tunnels with smoke to visualize air currents. Seeing the air currents allows an architect to make adjustments in their design, perhaps slightly moving the edge of an overhang next to a building to optimize natural ventilation.

How is this book relevant today?

VO: Today, more than ever, we have identified architecture as the cause and solution to a large percentage of our climate related problems. It is impossible for us to transition to a low carbon economy without reducing the energy consumption of buildings. To do that, we need to take into account bioclimatic design and Design with Climate shows us how to get that into our lexicon again.

Integrated design has taken off. Today, we have a renaissance of people thinking about green design. Not only do we need to design with climate, we now have to design for a changing climate and address global issues with architecture.

But even though we can say green design is becoming mainstream, the concepts in Design with Climate are still widely overlooked. Let’s take shading as an example. Many ‘green’ architects are still cladding their entire building in glass, which is neither comfortable nor energy efficient and ignores climatic information.

Architects rarely recognize how a building affects people and the environment. It’s surprising to me that architects don’t use climatic information more. It’s a gift to be able to make a space that people find thermally and visually comfortable. That can make an inspired design! There are dire consequences to designing a glass box. It’s critical today for architects to have a modicum of morality in design. This is the awareness that Design with Climate brings. There’s no penalty for your design to work with climate, just benefits.

Has this new edition of Design with Climate been changed or updated?

VO: As an existing book, it seemed classic and I wanted to honor that. So we reprinted the entire original manuscript exactly as it first appeared. But we added some essays to provide contemporary context. Donlyn Lyndon worked with my father on the original research. John Reynolds, professor emeritus at University of Oregon, has been teaching bioclimatic design for 40 years. Ken Yeang, who has been working with ecological design with tall buildings, brings Design with Climate into the 21st Century. These essays each add color and context and show how Design with Climate was a steppingstone to our contemporary architecture.

What does this book mean to you personally and professionally?

VO: I have always been interested in the implications of architecture and form. Our work is important, and can have a positive impact in the world. My father’s book has reached hundreds of thousands of people and encouraged environmental architects. I am very thankful that this book has had that influence. It is an honor for me to assist with this new edition, so this book endures as an inspiration for others to honor the earth, and to support the evolution of the human spirit.

Bird Fact Friday – Incredible diversity in southern Africa

From page 10 of Birds of Southern Africa:

More birds breed in southern Africa than in the U.S. and Canada combined. There are approximately 950 different species of birds in the region, of which about 140 are endemic or near endemic. One of the reasons for this is the climatic and topographical diversity of the region. The climate ranges from cool-temperate in the southwest to hot and tropical in the north. The southwest of the region experiences a winter rainfall regime, the north and east have summer rains, and some of the central parts have aseasonal rainfall. Additionally, rainfall increases from west to east. Winter snows are regular on the higher mountains, which rise to 3,500 meters above sea level.

Birds of Southern Africa
Ian Sinclair, Phil Hockey, Warwick Tarboton & Peter Ryan

BirdsBirds of Southern Africa continues to be the best and most authoritative guide to the bird species of this remarkable region. This fully revised edition covers all birds found in South Africa, Lesotho, Swaziland, Namibia, Botswana, Zimbabwe, and southern Mozambique. The 213 dazzling color plates depict more than 950 species and are accompanied by more than 950 color maps and detailed facing text.

This edition includes new identification information on behavior and habitat, updated taxonomy, additional artwork, improved raptor and wader plates with flight images for each species, up-to-date distribution maps reflecting resident and migrant species, and calendar bars indicating occurrence throughout the year and breeding months.

• Fully updated and revised
• 213 color plates featuring more than 950 species
• 950+ color maps and over 380 new improved illustrations
• Up-to-date distribution maps show the relative abundance of a species in the region and indicate resident or migrant status
• New identification information on behavior and habitat
• Taxonomy includes relevant species lumps and splits
• Raptor and wader plates with flight images for each species
• Calendar bars indicate occurrence throughout the year and breeding months.

For a limited time, get 30% off on this title!


An interview with Paul Wignall: How life on earth survived mass extinctions

Wignall jacketAs scientists ponder NASA’s recent announcement about the likelihood of water and the possibility of life, or extinct life on Mars, Paul Wignall, professor of palaeoenvironments at the University of Leeds, explores a calamitous period of environmental crisis in Earth’s own history. Wignall has been investigating mass extinctions for more than twenty-five years, a scientific quest that has taken him to dozens of countries around the world. Recently he took the time to answer some questions about his new book, The Worst of Times: How Life on Earth Survived Eighty Million Years of Extinctions.

So why was this the worst of times and what died?

PW: For 80 million years, there was a whole series of mass extinctions; it was the most intense period of catastrophes the world has ever known. These extinctions included the end-Permian mass extinction, the worst disaster of all time. All life on earth was affected, from plankton in the oceans to forests on land. Coral reefs were repeatedly decimated, and land animals, dominated by primitive reptiles and amphibians, lost huge numbers of species.

What was responsible for all of these catastrophes?

PW: There is a giant smoking gun for every one of these mass extinctions: vast fields of lava called flood basalts. The problem is how to link their eruption to extinction. The key is understanding the role of volcanic gas emissions. Some of these gases, such as carbon dioxide, are very familiar to us today, and their climatic effects, especially global warming, seem to have been severe.

Why did these catastrophes stop happening?

PW: This is the $64,000 dollar question at the core of The Worst of Times. It seems to be because of a supercontinent. For 80 million years, all continents were united into a single entity called Pangea. This world was extremely bad at coping with rapid global warming because the usual feedbacks involved in removing gases from the atmosphere were not functioning very well. Since then, Pangea has broken up into the familiar multi-continent world of today, and flood basalt eruptions have not triggered any more mass extinctions.

What were the survivors like?

PW: Very tough and often very successful. It takes a lot to survive the world’s worst disasters, and many of the common plants and animals of today can trace their origin back to this time. For example, mollusks such as clams and snails were around before this worst of times, and their survival marks the start of their dominance in today’s oceans.

Are there any lessons we can apply to modern day environmental worries?

PW: Yes and no. Rapid global warming features in all of the mass extinctions of the past, which should obviously give us cause for concern. On the plus side, we no longer live in a supercontinent world. Flood basalt eruptions of the recent geological past have triggered short-lived phases of warming, but they have not tipped the world over the brink.

Paul Wignall at Otto Fiord at Cape St Andrew.

Paul Wignall conducting field research at Otto Fiord at Cape St Andrew.

Does this have anything to do with the dinosaurs?

PW: Sort of. Dinosaurs first appear towards the end of this series of calamities and to a great extent they owed their success to the elimination of their competitors, which allowed them to flourish and dominate the land for 140 million years. As we know, their reign was brought to an abrupt halt by a giant meteorite strike – a very different catastrophe to the earlier ones.

What would you say to those who want to know how you can claim knowledge of what happened so long ago?

PW: Geologists have a lot of ways to interpret past worlds. The clues lie in rocks, so mass extinction research first requires finding rocks of the right age. Then, once samples have been collected, analysis of fossils tells us the level where the extinctions happened. This level can then be analyzed to find out what the conditions were like. It’s like taking a sample of mud from the bottom of the ocean and then using it reconstruct environmental conditions. However, not everything gets “fossilized” in ocean sediments. For example, it is very hard to work out what past temperatures were like, and ocean acidity levels are even harder to determine. This leaves plenty of scope for debate, and The Worst of Times looks at some of these on-going scientific clashes.

Read chapter 1 here.


Bender_Paleoclimate “Michael Bender, a giant in the field, fits the excitement, rigor, and deep insights of paleoclimatology into a succinct text suitable for a semester-long course introducing this indispensable branch of environmental science.”–Richard B. Alley, Pennsylvania State University

Michael L. Bender

In this book, Michael Bender, an internationally recognized authority on paleoclimate, provides a concise, comprehensive, and sophisticated introduction to the subject. After briefly describing the major periods in Earth history to provide geologic context, he discusses controls on climate and how the record of past climate is determined. The heart of the book then proceeds chronologically, introducing the history of climate changes over millions of years–its patterns and major transitions, and why average global temperature has varied so much. The book ends with a discussion of the Holocene (the past 10,000 years) and by putting manmade climate change in the context of paleoclimate.

The most up-to-date overview on the subject, Paleoclimate provides an ideal introduction to undergraduates, nonspecialist scientists, and general readers with a scientific background.


Watch Michael Bender discuss Paleoclimate at the Fundamentals of Climate Science Symposium at Princeton University

Request an examination copy.


Climate Dynamics

Cook_Climate_Dynamics “Climate change and its impacts are being embraced by a wider community than just earth scientists. A useful textbook, Climate Dynamics covers the basic science required to gain insights into what constitutes the climate system and how it behaves. While still being quantitative, the material is written in a lecture-note style that creates a simplified, but not simple, approach to teaching this complex subject.”–Chris E. Forest, Pennsylvania State University

Climate Dynamics
Kerry H. Cook

Climate Dynamics is an advanced undergraduate-level textbook that provides an essential foundation in the physical understanding of the earth’s climate system. The book assumes no background in atmospheric or ocean sciences and is appropriate for any science or engineering student who has completed two semesters of calculus and one semester of calculus-based physics.

  • Makes a physically based, quantitative understanding of climate change accessible to all science, engineering, and mathematics undergraduates
  • Explains how the climate system works and why the climate is changing
  • Reinforces, applies, and connects the basic ideas of calculus and physics
  • Emphasizes fundamental observations and understanding


Table of Contents

Sample this book:

Chapter 1 [PDF]

Request an examination copy.


New Earth Science Catalog

Be among the first to check out our new Earth Science catalog at:

Three new titles in the The Princeton Primers in Climate series are featured in the catalog.  Michael L. Bender’s Paleoclimate makes an ideal introduction to the subject. In Climate and Ecosystems, David Schimel looks at how Earth’s living systems profoundly shape the physical world. David Randall’s Atmosphere, Clouds, and Climate offers a short, reader-friendly introduction to atmospheric processes. There are more books in the series and you can find information at: . We invite you to browse and download the catalog to find more great books by great authors.

Are you going to the annual American Geophysical Union meeting in San Francisco? We’ll be there at booth 634. Charles H. Langmuir & Wally Broecker will be in our booth on Wednesday, Dec 5th at 3:30 p.m. signing copies of their revised and expanded book, How to Build a Habitable Planet. This classic account of how our habitable planet was assembled from the stuff of stars introduced readers to planetary, Earth, and climate science by way of a fascinating narrative. Now this great book has been made even better. Stop by and chat with the authors. We hope to see you there.

How would you like to receive timely e-mail announcements about new Princeton books in earth science? Follow the link for a quick and easy sign-up: . Your e-mail address will remain strictly confidential.

New Earth Science Catalog

catalog coverWe invite you to be among the first to download and browse our 2012 Earth Science catalog at:

Check out what is new in our Princeton Primers in Climate series. You will find books by Geoffrey K. Vallis, Shawn J. Marshall, David Randall and David Archer. Princeton Primers in Climate is a new series of short, authoritative books that explain the state of the art in climate-science research. Written specifically for students, researchers, and scientifically minded general readers looking for succinct and readable books on this frequently misunderstood subject, these primers reveal the physical workings of the global climate system with unmatched accessibility and detail.

We are celebrating the new series at the AGU annual meeting in San Francisco on Tuesday, December 6th.  You are invited to join us at our exhibit booth (no. 1449) at 3:30 p.m. for the party.  We hope to see you there.