Paleoclimate

Bender_Paleoclimate “Michael Bender, a giant in the field, fits the excitement, rigor, and deep insights of paleoclimatology into a succinct text suitable for a semester-long course introducing this indispensable branch of environmental science.”–Richard B. Alley, Pennsylvania State University

Paleoclimate
Michael L. Bender

In this book, Michael Bender, an internationally recognized authority on paleoclimate, provides a concise, comprehensive, and sophisticated introduction to the subject. After briefly describing the major periods in Earth history to provide geologic context, he discusses controls on climate and how the record of past climate is determined. The heart of the book then proceeds chronologically, introducing the history of climate changes over millions of years–its patterns and major transitions, and why average global temperature has varied so much. The book ends with a discussion of the Holocene (the past 10,000 years) and by putting manmade climate change in the context of paleoclimate.

The most up-to-date overview on the subject, Paleoclimate provides an ideal introduction to undergraduates, nonspecialist scientists, and general readers with a scientific background.

Endorsements

Watch Michael Bender discuss Paleoclimate at the Fundamentals of Climate Science Symposium at Princeton University

Request an examination copy.

 

Climate Dynamics

Cook_Climate_Dynamics “Climate change and its impacts are being embraced by a wider community than just earth scientists. A useful textbook, Climate Dynamics covers the basic science required to gain insights into what constitutes the climate system and how it behaves. While still being quantitative, the material is written in a lecture-note style that creates a simplified, but not simple, approach to teaching this complex subject.”–Chris E. Forest, Pennsylvania State University

Climate Dynamics
Kerry H. Cook

Climate Dynamics is an advanced undergraduate-level textbook that provides an essential foundation in the physical understanding of the earth’s climate system. The book assumes no background in atmospheric or ocean sciences and is appropriate for any science or engineering student who has completed two semesters of calculus and one semester of calculus-based physics.

  • Makes a physically based, quantitative understanding of climate change accessible to all science, engineering, and mathematics undergraduates
  • Explains how the climate system works and why the climate is changing
  • Reinforces, applies, and connects the basic ideas of calculus and physics
  • Emphasizes fundamental observations and understanding

Endorsements

Table of Contents

Sample this book:

Chapter 1 [PDF]

Request an examination copy.

 

New and Forthcoming Titles in Physics & Astrophysics

catalog coverIntroducing our new 2011 Physics and Astrophysics catalog at:
http://press.princeton.edu/catalogs/physics11.pdf

See page 2 for our new series, The Princeton Frontiers in Physics.  The series offers short introductions to some of today’s most exciting and dynamic research across the physical sciences.  Abraham Loeb’s How Did the First Stars and Galaxies Form? and Joshua S. Bloom’s What are Gamma-Ray Bursts? launch the series.  Great books for students, scientists, and scientifically minded general readers.

Additions to the Princeton Series in Astrophysics include Bruce T. Draine’s Physics of the Interstellar and Intergalactic Medium and Sara Seager’s Exoplanet Atmospheres. Professors, make sure to check out pages 3-5 for more textbooks.

The catalog is full of new titles by leading experts.  We invite you to browse and download the catalog.  If you’re at the American Astronomical Society meeting in Seattle, please stop by booth 301 and say hello.  Hope to see you there.