Memorable Quotes from Alice’s Adventures in Wonderland

Alice's Adventures in WonderlandHere at PUP, we’re celebrating the 150th anniversary of the publication of Alice’s Adventures in Wonderland with a new edition that combines the text of the 1897 version (thought to be the most authentic and correct by Lewis Carroll himself) with the illustrations done by Salvador Dalí for the 1969 Random House version. Readers can enjoy this familiar tale alongside Dalí’s hyper-saturated, surrealist pictures. In honor of Alice, here are some of the most memorable quotes from the book. Which is your favorite?

 

“Off with her head!”
–the Queen of Hearts

“A cat may look at a king.”
–Alice

“Curiouser and curiouser!”
–Alice

“[W]e’re all mad here. I’m mad. You’re mad.”
–the Cheshire Cat

“Everything’s got a moral, if only you can find it.”
–the Duchess

“For the Duchess. An invitation from the Queen to play croquet.”
–the Frog-Footman

“Begin at the beginning … and go on till you come to the end: then stop.”
the King

“I ca’n’t explain myself, I’m afraid, Sir … because I’m not myself, you see.”
Alice

“The Duchess! The Duchess! Oh my dear paws! Oh my fur and whiskers! She’ll get me executed, as sure as ferrets are ferrets!”
–the White Rabbit

Washington Post highlights historic clash between Einstein and Bergson on the nature of time

2015_Einstein_bannerWith the 100th anniversary of the general theory of relativity coming up in November, Einstein is popping up everywhere. Yesterday’s Washington Post ran a terrific feature on Einstein books, including three of our own: Hanoch Gutfreund and Jürgen Renn’s The Road to Relativity, Einstein’s Relativity: The Special and the General Theory, and Jimena Canales’s The Physicist and the Philosopher.

One of the most fascinating chapters of Einstein’s public life revolves around an encounter he had with Henri Bergson, the renowned philosopher, on April 6, 1922, in Paris. It was on this day that Einstein and Bergson publicly debated the nature of time, touching off a clash of worldviews between science and the humanities that persists today. The philosopher Bergson argued that time was not merely mechanical, and should be seen in terms of lived experience; Einstein dismissed Bergson’s psychological notions as irreconcilable with the realities of physics. The Physicist and the Philosopher tells the remarkable story of how this explosive debate between two famous thinkers created intellectual rifts and revolutionized an entire generation’s understanding of time.

Nancy Szokan’s piece in Washington Post recounts the dramatic collision:

In The Physicist and the Philosopher, Canales recounts how Bergson challenged Einstein’s theories, arguing that time is not a fourth dimension definable by scientists but a ‘vital impulse,’ the source of creativity. It was an incendiary topic at the time, and it shaped a split between science and humanities that persisted for decades—though Einstein was generally seen as the winner and Bergson is all but forgotten.

Bergson and Einstein, toward the end of their lives, each reflected on his rival’s legacy and dedication to the pursuit of truth: Bergson during the Nazi occupation of Paris and Einstein in the wake of the first hydrogen bomb. Referencing Einstein’s quest for scientific truth, Hanoch Gutfreund recently had an article in the Huffington Post on how Einstein helped shape the Hebrew University of Jerusalem (home of the Albert Einstein Archives online):

On the occasion of the opening of the university, Albert Einstein published a manifesto “The Mission of our University”, which generated interest and excitement in the entire Jewish and academic worlds.

It states: “The opening of our Hebrew University on Mount Scopus, at Jerusalem, is an event which should not only fill us with just pride, but should also inspire us to serious reflection. … A University is a place where the universality of human spirit manifests itself. Science and investigation recognize as their aim the truth only.”

Read the rest here.

November’s big anniversary serves as a reminder of the enduring commitment to scientific investigation that continues at The Hebrew University and centers of learning all over the world today.

Read sample chapters of The Physicist and the Philosopher here, The Road to Relativity here, and Relativity here.

You can find information on the Digital Einstein Papers, an open access site for The Collected Papers of Albert Einstein, comprising more than 30,000 unique documents here.

Princeton University Press gears up for MathFest 2015!

MathFest is an annual event held to celebrate mathematics with the Mathematical Association of America. This year, it will be held from August 5-8 in Washington, D.C.  Keep an eye out for all of the exciting things happening at the Princeton University Press Booth at this year’s MathFest, including book raffles, author readings, and more!

Below is a list of what you can look forward to at MathFest from our authors!

Thursday, August 6th

10:30AM – 11:30AM: Author Colin Adams gives a dramatic reading from Zombies and Calculus

2:00PM – 3:00PM: Author Tim Chartier demonstrates one of the popular hands-on approaches to math that he outlines in his book Math Bytes: the Candy pi-calculator

3:00PM – 4:00PM: Single Digits author Marc Chamberland shows videos from his popular YouTube channel Tipping Point Math

4:00PM – 5:00PM: Arthur Benjamin, author of The Fascinating World of Graph Theory, gives an author meet and greet, along with book plate signing

 Friday, August 7th

11:00AM – 12:00PM: Jim Henle, author of The Proof and the Pudding: What Mathematicians, Cooks, and You Have in Common, presents a personalized puzzle printing

1:00PM – 2:00PM: Frank Farris, author of Creating Symmetry, hosts a symmetry patterned scarf giveaway

Win a copy of THE ROAD TO RELATIVITY over on the official Einstein Facebook page!

Head on over to the official Facebook page of Albert Einstein to enter to win a copy of The Road to Relativity.

The contest starts today and will run from July 22nd at 11 AM ET until Wednesday, August 5th at 10:59 AM ET.

Einstein Book Contest Flyer 2

Happy Birthday to Nikola Tesla

j9941Nikola Tesla was born on this day in 1856. Here are 10 facts from Tesla: Inventor of the Electrical Age by W. Bernard Carlson:

1. Tesla has two meanings in Serbian: it can refer to a small ax called an adze or to a person with protruding teeth, a common characteristic of people in Nikola Tesla’s family.

2. The night Tesla was born there was a severe thunderstorm. The fearful midwife said, “He’ll be a child of the storm.” His mother responded, “No, of light.”

3. Initially Tesla wanted to be a teacher, but he switched to engineering in his second year at Joanneum Polytechnic School in order to work on building a spark-free motor.

4. One of his favorite hobbies was card-playing and gambling. “To sit down to a game of cards, was for me the quintessence of pleasure.”

5. When Tesla came to New York for the first time after living in Prague, Budapest, and Paris, he was shocked by the crudeness and vulgarity of Americans.

6. In 1886, Tesla was abandoned by his business partners and could not find work—he took a job digging ditches to get by. A patent he filed that year for thermomagnetic motor helped him get back on his feet.

7. In April of 1887, he formed the Tesla Electric Company with his two business partners, Alfred S. Brown and Charles F. Peck. His first lab was located in New York’s financial district.

8. Mark Twain was a good friend of Tesla’s.

9. Tesla suffered from periodic bouts of depression. He treated it by administering electroshock therapy to himself.

10. Tesla told a reporter that he did not want to marry because he thought it would compromise his work. He did not have any known relationships with women.

If you would like to learn more, you can preview the introduction of Tesla: Inventor of the Electrical Age.

150 years ago today, Alice in Wonderland was published

Alice's Adventures in WonderlandJuly 4, 2015 may be about Independence Day in the United States, but in Oxford, it’s about one of the great heroes of fiction, a young girl who followed a white rabbit, met a hookah-smoking caterpillar and asked, “Who are you?” 

In July 1865, 150 years ago, Charles Lutwidge Dodgson, a professor of mathematics and Anglican deacon, published Alice’s Adventures Underground, a story about a little girl who tumbles down a rabbit hole into a world of nonsense, but keeps her wits about her. With this the world was first introduced to Alice (who was inspired by a real child named Alice Liddell) and her pseudonymous creator, Lewis Carroll. To commemorate the anniversary, the rare first edition recently went on display in Oxford. Princeton University Press is honored to publish our own beautiful new edition of Alice’s Adventures in Wonderlandwith rarely seen illustrations by none other than Salvador Dalí.

Of course, Alice doesn’t just have a whimsical adventure full of anthropomorphic creatures. She falls into a world that is curiously logical and mathematical. Carroll expert Mark Burstein discusses Dalí’s connections with Carroll, his treatment of the symbolic figure of Alice, and the mathematical nature of Wonderland. In addition, mathematician Thomas Banchoff reflects on the friendship he shared with Dalí and the mathematical undercurrents in Dalí’s work.

Explore chapter one in full here, view the best illustrations over the years on Brain Pickings, or click here for a list of anniversary-related events. If you’re here in New Jersey, Washington Crossing’s Open Air Theater will be performing Alice in Wonderland in the park today at 11 and tomorrow at 4.

Happy birthday, Alice!

Q&A with Frank Farris, Author of Creating Symmetry: The Artful Mathematics of Wallpaper Patterns

Frank A. Farris teaches mathematics at Santa Clara University and is a former editor of Mathematics Magazine, a publication of the Mathematical Association of America. He is also the author of the new Princeton University Press book Creating Symmetry: The Artful Mathematics of Wallpaper Patterns. The book provides a hands-on, step-by-step introduction to the intriguing mathematics of symmetry.

Frank Farris gave Princeton University Press a look at why he wrote Creating Symmetry, where he feels this book will have major contributions, and what comes next.

Before and After: A Peach and a Sierra Stream Become a Pattern, by Frank A Farris

Before and After: A Peach and a Sierra Stream Become a Pattern, by Frank A Farris

What inspired you to get into mathematical writing?
FF: After editing Mathematics Magazine for many years, I developed a passion for communicating mathematics: I didn’t want dry accounts written by anonymous authors; I wanted stories told by people. I wasn’t so interested in problems and puzzles, but in the stories that bring us face to face with the grand structures of mathematics.

Why did you write this book?
FF: Many years ago, I asked the innocent question: What is a wallpaper pattern, really? Creating Symmetry is the story of my dissatisfaction with standard answers and how it led me on a curious journey to a new kind of mathematical art. I took some risks and let my personality show through, while maintaining an honest, mathematically responsible approach. I hope readers enjoy the balance: real math told by a person.

What do you think is the book’s most important contribution?
FF: Most people who see my artwork say they’ve never seen anything like these images and that pleases me immensely. Of course, people have seen wallpaper patterns before, but the unusual construction method I use—wallpaper waves and photographs—gives my patterns an intricacy and rhythm that people wouldn’t create through the usual potato-stamp construction method, where the patterns is made from discrete blocks.

What is your next project?
FF: I am working on a “wallpaper lookbook,” a book for the simple joy of looking at patterns. Creating Symmetry tells people how to make the patterns, and there’s quite a lot of mathematical detail to process. Not everyone who likes my work wants to know all the details, but can still appreciate the “before and after” nature of the images.

Who do you see as the audience for this book?
FF: There are three audiences and they will read the book in different ways. The general reader, who knows some calculus but may be a little rusty, should find a refreshing and challenging way to reconnect with mathematics. Undergraduate mathematics majors will enjoy the book as a summer project or enrichment reading, as it makes surprising connections among topics they may have studied. The professional mathematician will find this light reading—a chance to enjoy the amazing interconnectedness of our field.

 

Tipping Point Math Tuesdays With Marc Chamberland: What’s the Best Paper Size?

Tipping Point Tuesday takes on a global debate!

The United States and Canada use paper that is 8.5 inches by 11 inches, called US letter. However, the rest of the world officially uses A4 paper, which has a different aspect ratio. Which paper size is better, US letter or A4? Find the mathematical answer with the help of Marc Chamberland in a video from his YouTube channel Tipping Point Math.

 

Marc Chamberland takes on more mathematical scenarios in his book Single Digits: In Praise of Small Numbers. Read the first chapter here.

Tipping Point Math Tuesdays with Marc Chamberland: How many guards are enough?

Today’s Tipping Point Tuesday gives us a behind the scenes look at how mathematics can be used in unique ways in the workplace.

Here’s the scenario: In busy museums, guards keep an eye on the priceless works of art. Suppose a museum wants to schedule the fewest number of guards per museum shift without leaving any art display unmonitored. Marc Chamberland explains how a museum manager could use mathematics to calculate the ideal number of guards per shift.

Continue exploring numbers with Chamberland in his book, Single Digits: In Praise of Small Numbers. Start by reading the first chapter here.

Q&A with Marc Chamberland, author of Single Digits: In Praise of Small Numbers

Marc Chamberland is the Myra Steele Professor of Natural Science and Mathematics at Grinnell College. He is also the creator of the popular YouTube channel Tipping Point Math, which strives to make mathematics accessible to everyone. Continuing on his mathematics mission, Marc Chamberland has authored Single Digits: In Praise of Small Numbers, a book that looks at the vast numerical possibilities that can come from the single digits. j10437Over the course of the coming weeks, we will be exploring the single digits in real life math situations with the author himself by featuring a series of original videos from Tipping Point Math.

Recently Chamberland gave the press a look at the inspiration behind the book, along with some personal insights on being a mathematician, and more:

What was the motivation behind your Tipping Point Math website?

MC: I have long felt that many people are sour on math because they think it is all technical stuff that leads to nowhere. I felt that if they could be exposed to the rich ideas and beauty of mathematics presented in an interesting way, their negative opinion could change.

I had wondered for a while how YouTube could be used since it is such a popular medium. In 2013, I reconnected with Henry Reich, a former student of mine, who created the highly successful channels MinutePhysics and MinuteEarth. With his inspiration and advice, I was convinced that a similar channel for mathematics was possible. Thus the concept of Tipping Point Math was born.

What is the biggest misunderstanding people have about your mathematics profession?

MC: Besides my remarks about people thinking that math is only about technical stuff, there is also the misconception that all of mathematics is known. This is not the case at all. New mathematics is being developed every day. This ranges from very abstract ideas to applications such as signal processing, medical imaging, population modeling, and computer algorithms.

What would you have been if not a mathematician?

MC: In my last year of high school, I developed an unquenchable thirst to explore two academic areas: mathematics and music. Since I eventually became a mathematics professor, I suppose one could say that mathematics “won”. But music was also consuming. I would ask myself, “Why does that piece of music sound so good? Why does it produce particular emotional states? How can I compose music that affects people in different ways?” To this day I still ask some of these questions, I occasionally compose short pieces, and I play the piano, guitar, and sing. Would I have been a musician? Is it too late to change?

What are you reading right now?

MC: I’m reading “The Alchemist” (by Paulo Coelho) out loud to my wife. The simple language and overflowing spirituality is stunning.

Who do you see as the audience for your book, Single Digits?

MC: My audience: those who love beauty. I did not choose topics for their depth or their technical superiority. I principally chose vignettes that I thought are beautiful.

In Memory of John and Alicia Nash

NashGradThe staff and community of Princeton University Press mourns the tragic loss of John and Alicia Nash. In 2001 we had the great privilege of publishing The Essential John Nash, a collection of Professor Nash’s scholarly articles edited by his biographer, Sylvia Nasar, and his longtime colleague and friend, Princeton mathematician Harold Kuhn, (now deceased). The Essential John Nash received impressive public exposure largely because it was published during the release of the Academy Award-winning movie version of Nash’s biography, A Beautiful Mind. Critics and readers admired The Essential John Nash as a faithful representation of Nash’s most important work, made available for a broadly intellectual audience of mathematicians and social scientists. Gratifying as this recognition was for us, during the course of publication, the staff members at PUP who worked on Professor Nash’s book had the great good fortune to get to know him and Alicia, two gentle and wonderful people. Our thoughts and prayers are with their family.

Peter J. Dougherty
Director

Book Fact Friday – #8 Single Digits

From chapter eight of Marc Chamberland’s Single Digits:

How many times should you shuffle a deck of cards so that they’re well-mixed? Gamblers know that three or four times is not sufficient and take advantage of this fact. In 1992, researchers did computer simulations and estimated that seven rough riffle shuffles is a good amount. They took their research further and figured out that further shuffling does not significantly improve the mixing. If the shuffler does a perfect riffle shuffle (a Faro shuffle), in which s/he perfectly cuts the deck and shuffles so that each card from one side alternates with each card from the other side, then a standard 52-card deck will end in the same order that it started in after it is done 8 times.

Single Digits: In Praise of Small Numbers by Marc Chamberland
Read chapter one or peruse the table of contents.

The numbers one through nine have remarkable mathematical properties and characteristics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? Are there really “six degrees of separation” between all pairs of people? And how can any map need only four colors to ensure that no regions of the same color touch? In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics.
Each chapter focuses on a single digit, beginning with easy concepts that become more advanced as the chapter progresses. Chamberland covers vast numerical territory, such as illustrating the ways that the number three connects to chaos theory, an unsolved problem involving Egyptian fractions, the number of guards needed to protect an art gallery, and problematic election results. He considers the role of the number seven in matrix multiplication, the Transylvania lottery, synchronizing signals, and hearing the shape of a drum. Throughout, he introduces readers to an array of puzzles, such as perfect squares, the four hats problem, Strassen multiplication, Catalan’s conjecture, and so much more. The book’s short sections can be read independently and digested in bite-sized chunks—especially good for learning about the Ham Sandwich Theorem and the Pizza Theorem.
Appealing to high school and college students, professional mathematicians, and those mesmerized by patterns, this book shows that single digits offer a plethora of possibilities that readers can count on.