Benford’s Law: A curious statistical phenomenon that keeps getting curiouser

Ted Hill, one of the contributors to The Princeton Companion to Applied Mathematics, as well as the coauthor, with Arno Berger, of An Introduction to Benford’s Law, has written a post on this fascinating statistical phenomenon. You’ll be surprised at the rather unexpected places it pops up, from an analysis of Donald Trump’s finances, to earthquake detection.

Benford’s Law

The acclaimed business and technology news website Business Insider proudly offers this advice to its readers, in capital letters:


The curious statistical phenomenon known as Benford’s Law, first discovered by Newcomb in 1881 and later rediscovered and popularized by Benford in 1938, is currently experiencing an explosion of research activity, especially in fraud detection ranging from tax data and digital images to clinical trial statistics, and from voting returns to macroeconomic data. Complementing these new forensic Benford tools, recent applications also include earthquake detection, analysis of Big Data and of errors in scientific computations, and diagnostic tests for mathematical models. As is common in developing fields, the quality of this research is all over the map, from scholarly and insightful to amusing and outlandish. The most recent Benford article I have seen is an analysis of Donald Trump’s finances, and I will let interested readers have fun judging these Benford articles for themselves. Most may be found on the open access and fully searchable Benford Online Bibliography, which currently references more than 800 articles on Benford’s Law, as well as other resources (books, websites, lectures, etc.).

The First-digit Law

In its most common formulation, the special case of the first significant (i.e., first non-zero) decimal digit, Benford’s Law says that the leading decimal digit is not equally likely to be any one of the nine possible digits 1, 2, …, 9, but rather follows the logarithmic distribution

equationwhere D1 denotes the first significant decimal digit. Many numerical datasets follow this distribution, from mathematical tables like the Fibonacci numbers and powers of 2 to real-life data like the numbers appearing in newspapers, in tax returns, in eBay auctions, and in the meta-dataset of all numbers on the World Wide Web (see Figure 1).

For datasets like these that are close to being Benford, about 30% of the leading (nonzero) decimal digits are 1, about 18% are 2, and the other leading digit proportions decrease exponentially to about 5% that begin with 9.

fig 1
Figure 1. Empirical Evidence of Benford’s Law

The complete form of Benford’s Law also specifies the probabilities of occurrence of the second and higher significant digits, and more generally, the joint distribution of all the significant digits. For instance, the probability that a number has the same first three significant digits as π = 3.141… is

eqn 2(For non-decimal bases b, the analogous law simply replaces decimal logarithms with logarithms base b.)

Robustness of Benford’s Law

Benford’s Law is remarkably robust, which may help explain its ubiquity in both theory and applications. For example, it is the only distribution on significant digits that is scale invariant (e.g., converting from dollars to euros or feet to meters preserves Benford’s Law), and is the only continuous distribution on significant digits that is base-invariant.

As an example of stochastic robustness, if a random variable X satisfies Benford’s Law, then so does XY for all positive Y independent of X; thus in multiplying independent positive random variables, say to model stock prices, if you ever encounter a single Benford’s Law entry, the whole product will obey Benford’s Law. Moreover, if X follows Benford’s Law, then so do 1/X and X2, (and all other non-zero integral powers of X).

Benford’s Law is also robust under both additive and multiplicative errors: If an increasing unbounded sequence of values X obeys Benford’s Law, then so does X + E for every bounded “error” sequence E, and if X is Benford and E is any independent error with |E| < 1, then (1 + E)X is also exactly Benford.

Applications of Benford’s Law

The most widespread application of Benford’s Law currently is its use in detection of fraud. The idea here is simple: if true data of a certain type is known to be close to Benford’s Law, then chi-squared goodness-of-fit tests can be used as a simple “red flag” test for data fabrication or falsification. Whether the tested data are close to Benford’s Law or are not close proves nothing, but a poor fit raises the level of suspicion, at which time independent (non-Benford) tests or monitoring may be applied.

A similar application is being employed to detect changes in natural processes. If the significant digits are close to Benford’s Law when the process is in one particular state, but not when the process is in a different state, then comparison to Benford can help identify when changes in the state of the process occur. Recent studies have reported successful Benford’s Law tests to detect earthquakes, phase transitions in quantum many-body problems, different states of anesthesia, signal modulations in electrophysiological recordings, and output changes in interventional radiology.

Tests for goodness-of-fit to Benford are also useful as a diagnostic tool for assessing the appropriateness of mathematical models. If current and past data obey Benford’s Law, it is reasonable to expect that future data will also obey Benford’s Law. For example, the 1990, 2000, and 2010 census statistics of populations of the some three thousand counties in the United States follow Benford’s Law very closely (see Figure 1), so to evaluate a proposed mathematical model’s prediction of future populations, simply enter current values as input, and then check to see how closely the output of that model agrees with Benford’s Law (see Figure 2).

fig 2
Figure 2. Benford-in-Benford-out Diagnostic Test

The appearance of Benford’s law in real-life scientific computations is now widely accepted, both as an empirical fact (as reported in Knuth’s classic text), and as a mathematical fact (e.g., Newton’s method and related numerical algorithms have recently been shown to follow Benford’s Law). Thus, in those scientific calculations where Benford’s Law is expected to occur, knowledge of the distribution of the output of the algorithm permits better estimates of both round-off and overflow/underflow errors.

Recent Theoretical Developments

Complementing these applications are new theoretical advancements, which are useful in explaining and predicting when Benford analysis is appropriate, and which are also of independent mathematical interest. Recent results include:

  • The outputs of many numerical algorithms, including Newton’s method, obey Benford’s Law.
  • Iterations of most linear functions follow Benford’s Law exactly, and iterations of most functions close to linear, such as f(x) = 2x + ex, also follow Benford’s Law exactly.
  • Continuous functions with exponential or super-exponential growth or decay typically exhibit Benford’s Law behavior, and thus wide classes of initial value problems obey Benford’s Law exactly.
  • Powers and products of very general classes of random variables, including all random variables with densities, approach Benford’s law in the limit (see Figure 3 for the standard uniform case).
  • Many multidimensional systems such as powers of large classes of square matrices and Markov chains, obey Benford’s Law.
  • Large classes of stochastic processes, including geometric Brownian motion and many Levy processes, obey Benford’s Law.
  • If random samples from different randomly selected probability distributions are combined, the resulting meta-sample also typically converges to Benford’s Law. (This may help explain why numbers in the WWW and newspapers and combined financial data have been found to follow Benford’s Law.)


Fig 3
Figure 3. Powers of a Uniform Random Variable

The study of Benford’s Law has also at times been entertaining. I’ve been contacted about its use to support various religious philosophies (including evidence of Benford’s Law in the Bible and Quran, and its appearance in tables of the earth’s elements as evidence of Intelligent Design), as well as a website where Eastern European entrepreneurs sold Benford data to people who need it for 25 euros a pop. For me, however, the main attraction has been its wealth of fascinating and challenging mathematical questions.

Ted Hill is Professor Emeritus of Mathematics at the Georgia Institute of Technology, and currently Research Scholar in Residence at the California Polytechnic State University in San Luis Obispo. He is the co-author, with Arno Berger, of An Introduction to Benford’s Law, (Princeton University Press, 2015).

Intro to Benford's Law


Introducing the new video trailer for The Princeton Companion to Applied Mathematics

We are pleased to present the new video trailer for The Princeton Companion to Applied Mathematics. Modeled on the popular Princeton Companion to Mathematics, this is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book. Check out the video in which editor Nicholas Higham, Richardson Professor of Applied Mathematics at The University of Manchester, talks about the major ideas covered in this expansive project, which includes nearly 200 entries organized thematically and written by an international team of distinguished contributors.

An interview with Nicholas Higham on The Princeton Companion to Applied Mathematics

Higham jacket

We are excited to be running a series of posts on applied mathematics by Nicholas Higham over the next few weeks. Higham is editor of The Princeton Companion to Applied Mathematics, new this month. Recently he took the time to answer some questions about the book, and where the field is headed. Read his popular first post on color in mathematics here.

What is Applied Mathematics?

NH: There isn’t any generally agreed definition, but I rather like Lord Rayleigh’s comment that applied mathematics is about using mathematics to solve real-world problems “neither seeking nor avoiding mathematical difficulties”. This means that in applied mathematics we don’t go out of our way to consider special cases that will never arise in practice, but equally we do not sidestep genuine difficulties.

What is the purpose of The Companion?

NH: The Companion is intended to give an overview of the main areas of applied mathematics, to give examples of particular problems and connections with other areas, and to explain what applied mathematicians do—which includes writing, teaching, and promoting mathematics as well as studying the subject. The coverage of the book is not meant to be exhaustive, but it is certainly very broad and I hope that everyone from undergraduate students and mathematically interested lay readers to professionals in mathematics and related subjects will find it useful.

What is an example of something aspect of applied mathematics that you’ve learned while editing the book?

NH: Applied mathematics is a big subject and so there are many articles on topics outside my particular areas of expertise. A good example concerns applications of computational fluid dynamics in sport. An article by Nicola Parolini and Alfio Quarteroni describes the mathematical modeling of yachts for the America’s cup. The designer wishes to minimize water resistance on the hull and maximize the thrust produced by the sails. Numerical computations allow designs to be simulated without building and testing them. The article also describes mathematical modeling of the hi-tech swimsuits that are now banned from competition. The model enables the benefit of the suits on race times to be estimated.

The Companion is about 1000 pages. How would advise people to read the book.

NH: The book has a logical structure, with eight parts ranging from introductory material in Part I, the main areas of applied mathematics in Part IV (the longest part), through to broader essays in the final part. It is a good idea to start by reading some of the articles in Part I, especially if you are less familiar with the subject. But a perfectly sensible alternative approach is to select articles of interest from the table of contents, read them, and follow cross-references. Or, you can just choose a random article and start reading—or simply follow interesting index entries! We worked very hard on the cross-references and index so an unstructured approach to reading should lead you around the book and allow you to discover a lot of relevant material.

What was the hardest thing about editing The Companion?

NH: The hardest aspect of the project was ensuring that it was completed in a reasonable time-frame. With 165 authors it’s hard to keep track of everything and to to ensure that drafts, revisions, and corrected proofs are delivered on time.

How much of the book did you write?

NH: I wrote about 100 of the 1000 pages. This was great fun, but it was some of the hardest writing I’ve done. The reason is partly that I was sometimes writing about topics that I don’t normally write about. But it was also because Companion articles are quite different from the papers I’m used to writing: they should have a minimal number of equations and formal statements of theorems, lots of diagrams and illustrations, and no citations (just Further Reading at the end of the article).

How did you choose the cover?

NH: We considered many different ideas. But after a lot of thought we settled on the motor boat picture, which captures the important topics of fluid mechanics, waves, and ocean, all of which are covered in the book in a number of articles.

What is the most unexpected article?

NH: Perhaps the article Mediated Mathematics: Representations of Mathematics in Popular Culture and Why These Matter by sociologist of education Heather Mendick. She discusses the way mathematics is represented in numerous TV shows and films.

What would you be doing if you hadn’t become a mathematician?

NH: I’d be playing a Hammond B3 organ in a jazz or blues band. I’m a keen musician and played keyboards semi-professionally for many years, starting in my teens.

How did you go about organizing the book?

NH: I recruited five Associate Editors with expertise in different areas and we met and planned out the eight parts of the book and the articles, along with a list of authors to invite. We looked for authors who are leading international experts in their field and are at the same time excellent expositors. Signing up the 165 authors was quite a long process. We were able to find authors for almost every article, so just a very small number had to be dropped. In some cases the authors suggested changes of content or emphasis that we were happy to agree with.

What range of readers is The Companion aimed at?

NH: The target audience for The Companion is very broad. It includes mathematicians at undergraduate level or above, students, researchers, and professionals in other subjects who use mathematics, and mathematically interested lay readers. Some articles will also be accessible to students studying mathematics at pre-university level.

Why not just seek information online? Why is there a need for a book?

NH: When Princeton University Press asked me to edit The Companion they told me that reference books still have great value. Many people have trouble navigating the vast amount of information available online and so the need for carefully curated thematic reference works, written by high calibre authors, is as great as ever. So PUP’s experience is that print is definitely not dead, and indeed my own experience is that I have many books in PDF form on my computer, but if I want to read them seriously I use a hard copy.

How have you ensured that the book will not go out of date quickly?

NH: This was a major consideration. This was a five and a half year project and we wanted to make sure that the book will still be relevant 10, 20, or 50 years from now. To do that we were careful to choose articles on topics that have proven long-term value and are not likely to be of short-term interest. This is not to say that we don’t cover some relatively new, hot topics. For example, there are articles on compressed sensing (recovering sparse, high-dimensional data from a small number of indirect measurements) and on cloaking (hiding an object from an observer who is using electromagnetic, or other, forms of imaging, as in Harry Potter or Romulan space ships in Star Trek), both of which are areas that have grown tremendously in the last decade.

What sort of overview of applied mathematics does the book give?

NH: Applied mathematics is a huge subject, so we cannot cover everything in 1000 pages. We have tried to include the main areas of research as well as key underlying concepts, key equations, function and laws, as well as lots of example of applied mathematics problems. The examples range from the flight of a golf ball, to robotics, to ranking web pages. We also cover the use of applied mathematics in other disciplines such as engineering, biology, computer science, and physics. Indeed the book also has a significant mathematical physics component.

Where is the field going?

NH: Prior to the 20th century, applied mathematics was driven by problems in astronomy and mechanics. In the 20th century physics became the main driver, with other areas such as biology, chemistry, economics, engineering, and medicine also providing many challenging mathematical problems from the 1950s onwards. With the massive and still growing amounts of data available to us in today’s digital society information, in its many guises, will be an increasingly important influence on applied mathematics in the 21st century.

To what extent does The Companion discuss the history of applied mathematics?

NH: We have an excellent 25-page article in Part I titled The History of Applied Mathematics by historians of mathematics June Barrow-Green and Reinhard Siegmund-Schultze. Many articles contain historical information and anecdotes. So while The Companion looks to the future it also gives an appreciation of the history of the subject.

How do you see the connections between applied mathematics and other disciplines developing?

NH: Applied mathematics is becoming ever more interdisciplinary. Many articles in The Companion illustrate this. For example,

  • various facets of imaging feature in several articles, including those on compressed sensing, medical imaging, radar, and airport baggage screening,
  • the article on max-plus algebras shows how what may seem like an esoteric area of pure mathematics has applications to all kinds of scheduling processes,
  • the article on the spread of infectious diseases shows the value of mathematical models in epidemiology,
  • several articles show how mathematics can be used to help understand the earth’s weather and climate, focusing on topics such as weather prediction, tsunamis, and sea ice.

What are you thoughts on the role of computing in applied mathematics?

NH: Computation has been a growing aspect of applied mathematics ever since the first stored program computer was invented here in Manchester. More and more it is the case that numerical computations and simulations are used in tandem with, or even in place of, the classical analysis that relies just on pen and paper. What I find particularly interesting is that while the needs of mathematics and of science in general have, naturally, influenced the development of computers and programming languages, there have been influences in the other direction. For example, the notation for the ceiling and floor functions that map a real number to the next larger or smaller integer, respectively, was first introduced in the programming language APL.

Of course numerical computations are expressed in terms of algorithms, and algorithms are ubiquitous in applied mathematics, and strongly represented in the book.

Do you have any views on ensuring the correctness of work in applied mathematics?

NH: As the problems we solve become every more complicated, and the computations we perform run for longer and longer, questions about the correctness of our results become more important. Applied mathematicians have always been good at estimating answers, perhaps by an asymptotic analysis, so we usually know roughly what the answer should look like and we may be able to spot gross errors. Several particular aspects of treating correctness are covered in The Companion.

Uncertainty quantification is about understanding how uncertainties in the data of a problem affect the solution. It’s particularly important because often we don’t know the problem data exactly—for example, in analyzing groundwater flow we don’t know the exact structure of what lies under the ground and so have to make statistical assumptions, and we want to know how these impact the computed flows.

A different aspect of correctness concerns the reproducibility of our computations and treats issues such as whether another scientist can reproduce our results and whether a computation on a high-performance computer will produce exactly the same answer when the computation is repeated.

All of these issues are covered in multiple articles in the book.

Nicholas J. Higham is the Richardson Professor of Applied Mathematics at The University of Manchester. Mark R. Dennis is professor of theoretical physics at the University of Bristol. Paul Glendinning is professor of applied mathematics at The University of Manchester. Paul A. Martin is professor of applied mathematics at the Colorado School of Mines. Fadil Santosa is professor of mathematics at the University of Minnesota. Jared Tanner is professor of the mathematics of information at the University of Oxford.

Patterns are math we love to look at

This piece by Frank Farris was originally published on The Conversation.

Frank A Farris, Santa Clara University

Why do humans love to look at patterns? I can only guess, but I’ve written a whole book about new mathematical ways to make them. In Creating Symmetry, The Artful Mathematics of Wallpaper Patterns, I include a comprehensive set of recipes for turning photographs into patterns. The official definition of “pattern” is cumbersome; but you can think of a pattern as an image that repeats in some way, perhaps when we rotate, perhaps when we jump one unit along.

Here’s a pattern I made, using the logo of The Conversation, along with some strawberries and a lemon:

Repeating forever left and right.
Frank A Farris, CC BY-ND

Mathematicians call this a frieze pattern because it repeats over and over again left and right. Your mind leads you to believe that this pattern repeats indefinitely in either direction; somehow you know how to continue the pattern beyond the frame. You also can see that the pattern along the bottom of the image is the same as the pattern along the top, only flipped and slid over a bit.

When we can do something to a pattern that leaves it unchanged, we call that a symmetry of the pattern. So sliding this pattern sideways just the right amount – let’s call that translation by one unit – is a symmetry of my pattern. The flip-and-slide motion is called a glide reflection, so we say the above pattern has glide symmetry.

A row of A’s has multiple symmetries.
Frank A Farris, CC BY-ND

You can make frieze patterns from rows of letters, as long as you can imagine that the row continues indefinitely left and right. I’ll indicate that idea by …AAAAA…. This row of letters definitely has what we call translational symmetry, since we can slide along the row, one A at a time, and wind up with the same pattern.

What other symmetries does it have? If you use a different font for your A’s, that could mess up the symmetry, but if the legs of the letter A are the same, as above, then this row has reflection symmetry about a vertical axis drawn through the center of each A.

Now here’s where some interesting mathematics comes in: did you notice the reflection axis between the As? It turns out that every frieze pattern with one vertical mirror axis, and hence an infinite row of them (by the translational symmetry shared by all friezes), must necessarily have an additional set of vertical mirror axes exactly halfway between the others. And the mathematical explanation is not too hard.

Suppose a pattern stays the same when you flip it about a mirror axis. And suppose the same pattern is preserved if you slide it one unit to the right. If doing the first motion leaves the pattern alone and doing the second motion also leaves the pattern alone, then doing first one and then the other leaves the pattern alone.

Flipping and then sliding is the same as one big flip.
Frank A Farris, CC BY-ND

You can act this out with your hand: put your right hand face down on a table with the mirror axis through your middle finger. First flip your hand over (the mirror symmetry), then slide it one unit to the right (the translation). Observe that this is exactly the same motion as flipping your hand about an axis half a unit from the first.

That proves it! No one can create a pattern with translational symmetry and mirrors without also creating those intermediate mirror symmetries. This is the essence of the mathematical concept of group: if a pattern has some symmetries, then it must have all the others that arise from combining those.

The surprising thing is that there are only a few different types of frieze symmetry. When I talk about types, I mean that a row of A’s has the same type as a row of V’s. (Look for those intermediate mirror axes!) Mathematicians say that the two groups of symmetries are isomorphic, meaning of the same form.

It turns out there are exactly seven different frieze groups. Surprised? You can probably figure out what they are, with some help. Let me explain how to name them, according to the International Union of Crystallographers.

The naming symbol uses the template prvh, where the p is just a placeholder, the r denotes rotational symmetry (think of a row of N’s), the v marks vertical qualities and the h is for horizontal. The name for the pattern of A’s is p1m1: no rotation, vertical mirror, no horizontal feature beyond translation. They use 1 as a placeholder when that particular kind of symmetry does not occur in the pattern.

What do I mean by horizontal stuff? My introductory frieze was p11g, because there’s glide symmetry in the horizontal directions and no symmetry in the other slots.

Another frieze pattern, this one based on a photo of a persimmon.
Frank A Farris, CC BY-ND

Write down a bunch of rows of letters and see what types of symmetry you can name. Hint: the persimmon pattern above (or that row of N’s) would be named p211. There can’t be a p1g1 because we insist that our frieze has translational symmetry in the horizontal direction. There can’t be a p1mg because if you have the m in the vertical direction and a g in the horizontal, you’re forced (not by me, but by the nature of reality) to have rotational symmetry, which lands you in p2mg.

A p2mg pattern based on some of the same raw materials as our first frieze pattern.

It’s hard to make p2mg patterns with letters, so here’s one made from the same lemon and strawberries. I left out the logo, as the words became too distorted. Look for the horizontal glides, vertical mirrors, and centers of twofold rotational symmetry. (Here’s a funny feature: the smiling strawberry faces turn sad when you see them upside down.)

One consequence of the limitation on wallpaper groups is that honeybees cannot make combs with fivefold symmetry.
LHG Creative Photography, CC BY-NC-ND

In my book, I focus more on wallpaper patterns: those that repeat forever along two different axes. I explain how to use mathematical formulas called complex wave forms to construct wallpaper patterns. I prove that every wallpaper group is isomorphic – a mathematical concept meaning of the same form – to one of only 17 prototype groups. Since pattern types limit the possible structures of crystals and even atoms, all results of this type say something deep about the nature of reality.

Ancient Roman mosaic floor in Carranque, Spain.
a_marga, CC BY-SA

Whatever the adaptive reasons for our human love for patterns, we have been making them for a long time. Every decorative tradition includes the same limited set of pattern types, though sometimes there are cultural reasons for breaking symmetry or omitting certain types. Did our visual love for recognizing that “Yes, this is the same as that!” originally have a useful root, perhaps evolving from an advantage in distinguishing edible from poisonous plants, for instance? Or do we just like them? Whyever it is, we still get pleasure from these repetitive patterns tens of thousands of years later.

Frank A Farris, Associate Professor of Mathematics, Santa Clara University. He is the author of Creating Symmetry.

This article was originally published on The Conversation. Read the original article.


The Conversation

Nicholas Higham on Mathematics in Color


We are excited to be running a series of posts on applied mathematics by Nicholas Higham over the next few weeks. Higham is editor of The Princeton Companion to Applied Mathematics, which is out this month. A slightly longer version of this post on color in mathematics can be found on Higham’s blog, and it has been cross posted at John Cook’s blog, The Endeavour. —PUP Blog Editor

Color is a fascinating subject. Important early contributions to our understanding of it came from physicists and mathematicians such as Newton, Young, Grassmann, Maxwell, and Helmholtz. Today, the science of color measurement and description is well established and we rely on it in our daily lives, from when we view images on a computer screen to when we order paint, wallpaper, or a car, of a specified color.

For practical purposes color space, as perceived by humans, is three-dimensional, because our retinas have three different types of cones, which have peak sensitivities at wavelengths corresponding roughly to red, green, and blue. It’s therefore possible to use linear algebra in three dimensions to analyze various aspects of color.


A good example of the use of linear algebra is to understand metamerism, which is the phenomenon whereby two objects can appear to have the same color but are actually giving off light having different spectral decompositions. This is something we are usually unaware of, but it is welcome in that color output systems (such as televisions and computer monitors) rely on it.

Mathematically, the response of the cones on the retina to light can be modeled as a matrix-vector product Af, where A is a 3-by-n matrix and f is an n-vector that contains samples of the spectral distribution of the light hitting the retina. The parameter n is a discretization parameter that is typically about 80 in practice. Metamerism corresponds to the fact that Af_1 = Af_2 is possible for different vectors f_1 and f_2. This equation is equivalent to saying that Ag = 0 for a nonzero vector g =f_1-f_2, or, in other words, that a matrix with fewer rows than columns has a nontrivial null space.

Metamerism is not always welcome. If you have ever printed your photographs on an inkjet printer you may have observed that a print that looked fine when viewed indoors under tungsten lighting can have a color cast when viewed in daylight.

LAB Space: Separating Color from Luminosity

In digital imaging the term channel refers to the grayscale image representing the values of the pixels in one of the coordinates, most often R, G, or B (for red, green, and blue) in an RGB image. It is sometimes said that an image has ten channels. The number ten is arrived at by combining coordinates from the representation of an image in three different color spaces. RGB supplies three channels, a space called LAB (pronounced “ell-A-B”) provides another three channels, and the last four channels are from CMYK (cyan, magenta, yellow, black), the color space in which all printing is done.

LAB is a rather esoteric color space that separates luminosity (or lightness, the L coordinate) from color (the A and B coordinates). In recent years photographers have realized that LAB can be very useful for image manipulations, allowing certain things to be done much more easily than in RGB. This usage is an example of a technique used all the time by mathematicians: if we can’t solve a problem in a given form then we transform it into another representation of the problem that we can solve.

As an example of the power of LAB space, consider this image of aeroplanes at Schiphol airport.


Original image.

Suppose that KLM are considering changing their livery from blue to pink. How can the image be edited to illustrate how the new livery would look? “Painting in” the new color over the old using the brush tool in image editing software would be a painstaking task (note the many windows to paint around and the darker blue in the shadow area under the tail). The next image was produced in
just a few seconds.


Image converted to LAB space and A channel flipped.

How was it done? The image was converted from RGB to LAB space (which is a nonlinear transformation) and then the coordinates of the A channel were replaced by their negatives. Why did this work? The A channel represents color on a green–magenta axis (and the B channel on a blue–yellow axis). Apart from the blue fuselage, most pixels have a small A component, so reversing the sign of this component doesn’t make much difference to them. But for the blue, which has a negative A component, this flipping of the A channel adds just enough magenta to make the planes pink.

You may recall from earlier this year the infamous photo of a dress that generated a huge amount of interest on the web because some viewers perceived the dress as being blue and black while others saw it as white and gold. A recent paper What Can We Learn from a Dress with Ambiguous Colors? analyzes both the photo and the original dress using LAB coordinates. One reason for using LAB in this context is its device independence, which contrasts with RGB, for which the coordinates have no universally agreed meaning.

Higham jacketThe Princeton Companion to Applied Mathematics

Nicholas J. Higham is the Richardson Professor of Applied Mathematics at The University of Manchester, and editor of The Princeton Companion to Applied Mathematics. His article Color Spaces and Digital Imaging in The Princeton Companion to Applied Mathematics gives an introduction to the mathematics of color and the representation and manipulation of digital images. In particular, it emphasizes the role of linear algebra in modeling color and gives more detail on LAB space.



Five places you didn’t expect to encounter applied math

You don’t need to step into a classroom to have a run-in with mathematics. Professionals from a range of backgrounds — engineering, economics, physics, biology, computer science — use mathematics every day. To celebrate the publication of the much-anticipated Princeton Companion to Applied Mathematics, edited by Nicholas J. Higham, we’re thinking about all of the unique places and situations where applied mathematics is at work. Here is a list of just a few, compiled with a little help from our numerically inclined friends.

On the Golf Course


Golf involves mathematics, and not just when keeping score. The flight of your golf ball is affected by how air interacts with the surface of the ball. Did you know that the dimples in golf balls have a purpose, one with a mathematical explanation? Douglas N. Arnold, professor of Mathematics at the University of Minnesota, tells us more:

In the middle of the nineteenth century, when rubber golf balls were introduced, golfers noticed that old scuffed golf balls traveled farther than new smooth balls, although no one could explain this unintuitive behavior. This eventually gave rise to the modern dimpled golf ball. Along the way a great deal was learned about aerodynamics and its mathematical modeling. Hundreds of different dimple patterns have been devised, marketed, and patented. However, even today the optimal dimple pattern lies beyond our reach, and its discovery remains a tough challenge for applied mathematics and computational science.

Check out Dr. Arnold’s entry, “The Flight of a Golf Ball,” where he explains why golf ball dimples are an important part of your Saturday morning tee time.

On Wall Street


Wall Street is all about the numbers. Whether modeling the risk of a single stock or mapping the complex interactions that make up the world’s financial structure, mathematics helps the financial sector to study and evaluate systemic risk.

“The complexity, unpredictability, and evolving nature of financial markets continues to provide an enormous challenge to mathematicians, engineers, and economists in identifying, analyzing, and quantifying the issues and risks they pose,” write Dr. René A. Carmona and Dr. Ronnie Sircar of Princeton University.

In their entry, “Financial Mathematics,” Dr. Carmona and Dr. Sircar discuss how the finance industry uses mathematics. They also examine the role of mathematics in understanding and regulating financial markets in light of the financial crisis of 2008.

On Your Phone’s Weather App

Do you check the 10-day forecast during the weekend before a big outdoor event, fingers crossed for clear skies and no rain? There’s math behind that “chance of thunderstorms” prediction. NWP [numerical weather prediction] helps meteorologists to predict weather patterns for more than a week ahead. Better numerical schemes are partially responsible for moving us forward from the weather prediction methods of fifty years ago.

In his article “Numerical Weather Prediction,” Peter Lynch presents the mathematical principles of NWP and illustrates the process by considering some specific models and their application to practical forecasting. Dr. Lynch describes the many conditions that can be better predicted using NWP:

NWP models are used to generate special guidance for the marine community. Predicted winds are used to drive wave models, which predict sea and swell heights and periods. Prediction of road ice is performed by specially designed models that use forecasts of temperature, humidity, precipitation, cloudiness, and other parameters to estimate the conditions on the road surface. Trajectories are easily derived from limited-area models. These are vital for modeling pollution drift, for nuclear fallout, smoke from forest fires, and so on. Aviation benefits significantly from NWP guidance, which provides warnings of hazards such as lightning, icing, and clear-air turbulence.

In the Airport Security Line

baggage claim

On your next trip through airport security, take a look at the x-ray machine. Once an object, like your suitcase, is scanned, the image can be viewed from multiple angles by a security officer. Threat detection software can also be used to locate problematic items. There is math at work here too.

W. R. B. Lionheart, professor of Applied Mathematics at the University of Manchester, explains this technology in his entry “Airport Baggage Screening with X-Ray Tomography.”

While Researching Your Next Vacation


Getting ready for your first vacation of the fall? Buying tickets, making dinner reservations, researching tourist attractions — what did we do without the internet? Or rather, what did we do before the organized internet?

When the internet was still in its early stages, search engines were not as advanced as they are today, and webpage results were ranked by simple rules. Searching for “New York sightseeing” may have led you to the page where the search term appears the most, instead of a page with the most useful information. Today, search engines use a more advanced method for ranking web pages: grouping pages into authority pages, which have many links to them, and hub pages, which point to many authorities. The catch is that these terms depend on one another. How does this work? In the Princeton Companion to Applied Mathematics, editor Nicholas Higham explains the mathematics behind webpage ranking.

Looking for more examples of math in the world? Check out this video from SIAM, where SIAM conference attendees are asked how they use math in their work. Math really is all around us.

Memorable Quotes from Alice’s Adventures in Wonderland

Alice's Adventures in WonderlandHere at PUP, we’re celebrating the 150th anniversary of the publication of Alice’s Adventures in Wonderland with a new edition that combines the text of the 1897 version (thought to be the most authentic and correct by Lewis Carroll himself) with the illustrations done by Salvador Dalí for the 1969 Random House version. Readers can enjoy this familiar tale alongside Dalí’s hyper-saturated, surrealist pictures. In honor of Alice, here are some of the most memorable quotes from the book. Which is your favorite?


“Off with her head!”
–the Queen of Hearts

“A cat may look at a king.”

“Curiouser and curiouser!”

“[W]e’re all mad here. I’m mad. You’re mad.”
–the Cheshire Cat

“Everything’s got a moral, if only you can find it.”
–the Duchess

“For the Duchess. An invitation from the Queen to play croquet.”
–the Frog-Footman

“Begin at the beginning … and go on till you come to the end: then stop.”
the King

“I ca’n’t explain myself, I’m afraid, Sir … because I’m not myself, you see.”

“The Duchess! The Duchess! Oh my dear paws! Oh my fur and whiskers! She’ll get me executed, as sure as ferrets are ferrets!”
–the White Rabbit

Washington Post highlights historic clash between Einstein and Bergson on the nature of time

2015_Einstein_bannerWith the 100th anniversary of the general theory of relativity coming up in November, Einstein is popping up everywhere. Yesterday’s Washington Post ran a terrific feature on Einstein books, including three of our own: Hanoch Gutfreund and Jürgen Renn’s The Road to Relativity, Einstein’s Relativity: The Special and the General Theory, and Jimena Canales’s The Physicist and the Philosopher.

One of the most fascinating chapters of Einstein’s public life revolves around an encounter he had with Henri Bergson, the renowned philosopher, on April 6, 1922, in Paris. It was on this day that Einstein and Bergson publicly debated the nature of time, touching off a clash of worldviews between science and the humanities that persists today. The philosopher Bergson argued that time was not merely mechanical, and should be seen in terms of lived experience; Einstein dismissed Bergson’s psychological notions as irreconcilable with the realities of physics. The Physicist and the Philosopher tells the remarkable story of how this explosive debate between two famous thinkers created intellectual rifts and revolutionized an entire generation’s understanding of time.

Nancy Szokan’s piece in Washington Post recounts the dramatic collision:

In The Physicist and the Philosopher, Canales recounts how Bergson challenged Einstein’s theories, arguing that time is not a fourth dimension definable by scientists but a ‘vital impulse,’ the source of creativity. It was an incendiary topic at the time, and it shaped a split between science and humanities that persisted for decades—though Einstein was generally seen as the winner and Bergson is all but forgotten.

Bergson and Einstein, toward the end of their lives, each reflected on his rival’s legacy and dedication to the pursuit of truth: Bergson during the Nazi occupation of Paris and Einstein in the wake of the first hydrogen bomb. Referencing Einstein’s quest for scientific truth, Hanoch Gutfreund recently had an article in the Huffington Post on how Einstein helped shape the Hebrew University of Jerusalem (home of the Albert Einstein Archives online):

On the occasion of the opening of the university, Albert Einstein published a manifesto “The Mission of our University”, which generated interest and excitement in the entire Jewish and academic worlds.

It states: “The opening of our Hebrew University on Mount Scopus, at Jerusalem, is an event which should not only fill us with just pride, but should also inspire us to serious reflection. … A University is a place where the universality of human spirit manifests itself. Science and investigation recognize as their aim the truth only.”

Read the rest here.

November’s big anniversary serves as a reminder of the enduring commitment to scientific investigation that continues at The Hebrew University and centers of learning all over the world today.

Read sample chapters of The Physicist and the Philosopher here, The Road to Relativity here, and Relativity here.

You can find information on the Digital Einstein Papers, an open access site for The Collected Papers of Albert Einstein, comprising more than 30,000 unique documents here.

Princeton University Press gears up for MathFest 2015!

MathFest is an annual event held to celebrate mathematics with the Mathematical Association of America. This year, it will be held from August 5-8 in Washington, D.C.  Keep an eye out for all of the exciting things happening at the Princeton University Press Booth at this year’s MathFest, including book raffles, author readings, and more!

Below is a list of what you can look forward to at MathFest from our authors!

Thursday, August 6th

10:30AM – 11:30AM: Author Colin Adams gives a dramatic reading from Zombies and Calculus

2:00PM – 3:00PM: Author Tim Chartier demonstrates one of the popular hands-on approaches to math that he outlines in his book Math Bytes: the Candy pi-calculator

3:00PM – 4:00PM: Single Digits author Marc Chamberland shows videos from his popular YouTube channel Tipping Point Math

4:00PM – 5:00PM: Arthur Benjamin, author of The Fascinating World of Graph Theory, gives an author meet and greet, along with book plate signing

 Friday, August 7th

11:00AM – 12:00PM: Jim Henle, author of The Proof and the Pudding: What Mathematicians, Cooks, and You Have in Common, presents a personalized puzzle printing

1:00PM – 2:00PM: Frank Farris, author of Creating Symmetry, hosts a symmetry patterned scarf giveaway

Win a copy of THE ROAD TO RELATIVITY over on the official Einstein Facebook page!

Head on over to the official Facebook page of Albert Einstein to enter to win a copy of The Road to Relativity.

The contest starts today and will run from July 22nd at 11 AM ET until Wednesday, August 5th at 10:59 AM ET.

Einstein Book Contest Flyer 2

Happy Birthday to Nikola Tesla

j9941Nikola Tesla was born on this day in 1856. Here are 10 facts from Tesla: Inventor of the Electrical Age by W. Bernard Carlson:

1. Tesla has two meanings in Serbian: it can refer to a small ax called an adze or to a person with protruding teeth, a common characteristic of people in Nikola Tesla’s family.

2. The night Tesla was born there was a severe thunderstorm. The fearful midwife said, “He’ll be a child of the storm.” His mother responded, “No, of light.”

3. Initially Tesla wanted to be a teacher, but he switched to engineering in his second year at Joanneum Polytechnic School in order to work on building a spark-free motor.

4. One of his favorite hobbies was card-playing and gambling. “To sit down to a game of cards, was for me the quintessence of pleasure.”

5. When Tesla came to New York for the first time after living in Prague, Budapest, and Paris, he was shocked by the crudeness and vulgarity of Americans.

6. In 1886, Tesla was abandoned by his business partners and could not find work—he took a job digging ditches to get by. A patent he filed that year for thermomagnetic motor helped him get back on his feet.

7. In April of 1887, he formed the Tesla Electric Company with his two business partners, Alfred S. Brown and Charles F. Peck. His first lab was located in New York’s financial district.

8. Mark Twain was a good friend of Tesla’s.

9. Tesla suffered from periodic bouts of depression. He treated it by administering electroshock therapy to himself.

10. Tesla told a reporter that he did not want to marry because he thought it would compromise his work. He did not have any known relationships with women.

If you would like to learn more, you can preview the introduction of Tesla: Inventor of the Electrical Age.

150 years ago today, Alice in Wonderland was published

Alice's Adventures in WonderlandJuly 4, 2015 may be about Independence Day in the United States, but in Oxford, it’s about one of the great heroes of fiction, a young girl who followed a white rabbit, met a hookah-smoking caterpillar and asked, “Who are you?” 

In July 1865, 150 years ago, Charles Lutwidge Dodgson, a professor of mathematics and Anglican deacon, published Alice’s Adventures Underground, a story about a little girl who tumbles down a rabbit hole into a world of nonsense, but keeps her wits about her. With this the world was first introduced to Alice (who was inspired by a real child named Alice Liddell) and her pseudonymous creator, Lewis Carroll. To commemorate the anniversary, the rare first edition recently went on display in Oxford. Princeton University Press is honored to publish our own beautiful new edition of Alice’s Adventures in Wonderlandwith rarely seen illustrations by none other than Salvador Dalí.

Of course, Alice doesn’t just have a whimsical adventure full of anthropomorphic creatures. She falls into a world that is curiously logical and mathematical. Carroll expert Mark Burstein discusses Dalí’s connections with Carroll, his treatment of the symbolic figure of Alice, and the mathematical nature of Wonderland. In addition, mathematician Thomas Banchoff reflects on the friendship he shared with Dalí and the mathematical undercurrents in Dalí’s work.

Explore chapter one in full here, view the best illustrations over the years on Brain Pickings, or click here for a list of anniversary-related events. If you’re here in New Jersey, Washington Crossing’s Open Air Theater will be performing Alice in Wonderland in the park today at 11 and tomorrow at 4.

Happy birthday, Alice!