In Memory of John and Alicia Nash

NashGradThe staff and community of Princeton University Press mourns the tragic loss of John and Alicia Nash. In 2001 we had the great privilege of publishing The Essential John Nash, a collection of Professor Nash’s scholarly articles edited by his biographer, Sylvia Nasar, and his longtime colleague and friend, Princeton mathematician Harold Kuhn, (now deceased). The Essential John Nash received impressive public exposure largely because it was published during the release of the Academy Award-winning movie version of Nash’s biography, A Beautiful Mind. Critics and readers admired The Essential John Nash as a faithful representation of Nash’s most important work, made available for a broadly intellectual audience of mathematicians and social scientists. Gratifying as this recognition was for us, during the course of publication, the staff members at PUP who worked on Professor Nash’s book had the great good fortune to get to know him and Alicia, two gentle and wonderful people. Our thoughts and prayers are with their family.

Peter J. Dougherty
Director

Book Fact Friday – #8 Single Digits

From chapter eight of Marc Chamberland’s Single Digits:

How many times should you shuffle a deck of cards so that they’re well-mixed? Gamblers know that three or four times is not sufficient and take advantage of this fact. In 1992, researchers did computer simulations and estimated that seven rough riffle shuffles is a good amount. They took their research further and figured out that further shuffling does not significantly improve the mixing. If the shuffler does a perfect riffle shuffle (a Faro shuffle), in which s/he perfectly cuts the deck and shuffles so that each card from one side alternates with each card from the other side, then a standard 52-card deck will end in the same order that it started in after it is done 8 times.

Single Digits: In Praise of Small Numbers by Marc Chamberland
Read chapter one or peruse the table of contents.

The numbers one through nine have remarkable mathematical properties and characteristics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? Are there really “six degrees of separation” between all pairs of people? And how can any map need only four colors to ensure that no regions of the same color touch? In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics.
Each chapter focuses on a single digit, beginning with easy concepts that become more advanced as the chapter progresses. Chamberland covers vast numerical territory, such as illustrating the ways that the number three connects to chaos theory, an unsolved problem involving Egyptian fractions, the number of guards needed to protect an art gallery, and problematic election results. He considers the role of the number seven in matrix multiplication, the Transylvania lottery, synchronizing signals, and hearing the shape of a drum. Throughout, he introduces readers to an array of puzzles, such as perfect squares, the four hats problem, Strassen multiplication, Catalan’s conjecture, and so much more. The book’s short sections can be read independently and digested in bite-sized chunks—especially good for learning about the Ham Sandwich Theorem and the Pizza Theorem.
Appealing to high school and college students, professional mathematicians, and those mesmerized by patterns, this book shows that single digits offer a plethora of possibilities that readers can count on.

#MammothMonday: PUP’s pups sound off on How to Clone a Mammoth

The idea of cloning a mammoth, the science of which is explored in evolutionary biologist and “ancient DNA expert” Beth Shapiro’s new book, How to Clone a Mammoth, is the subject of considerable debate. One can only imagine what the animal kingdom would think of such an undertaking, but wonder no more. PUP staffers were feeling “punny” enough to ask their best friends:

 

Chester reads shapiro

Chester can’t get past “ice age bones”.

 

Buddy reads shapiro

Buddy thinks passenger pigeons would be so much more civilized… and fun to chase.

 

Tux reads shapiro

Tux always wanted to be an evolutionary biologist…

 

Stella reads Shapiro

Stella thinks 240 pages on a glorified elephant is a little excessive. Take her for a walk.

 

Murphy reads shapiro

A mammoth weighs how much?! Don’t worry, Murphy. The tundra is a long way from New Jersey.

 

Glad we got that out of our systems. Check out a series of original videos on cloning from How to Clone a Mammoth author Beth Shapiro here.

Win a copy of Relativity: 100th Anniversary Edition by Albert Einstein through Corbis!

We are teaming with Corbis Entertainment to offer this terrific giveaway through their official Albert Einstein Facebook page. Contest details below, but please head over to the “official Facebook page of the world’s favorite genius” to enter!

Enter for a chance to win a FREE COPY of “Relativity: 100th Anniversary Edition” by Albert Einstein!

Math Drives Careers: Paul Nahin on Electrical Engineering and √-1

Paul Nahin is the author of many books we’ve proudly published over the years, including An Imaginary Tale, Dr. Euler’s Fabulous Formula, and Number Crunching. For today’s installment in our Math Awareness Month series, he writes about his first encounter with √-1.

Electrical Engineering and √-1

It won’t come as a surprise to very many to learn that mathematics is central to electrical engineering. Probably more surprising is that the cornerstone of that mathematical foundation is the mysterious (some even think mystical) square-root of minus one. Every electrical engineer almost surely has a story to tell about their first encounter with √-1, and in this essay I’ll tell you mine.

Lots of different kinds of mathematics have been important in my personal career at different times; in particular, Boolean algebra (when I worked as a digital logic designer), and probability theory (when I wore the label of radar system engineer). But it’s the mathematics of √-1 that has been the most important. My introduction to √-1 came when I was still in high school. In my freshman year (1954) my father gave me the gift of a subscription to a new magazine called Popular Electronics. From it I learned how to read electrical schematics from the projects that appeared in each issue, but my most important lesson came when I opened the April 1955 issue.

It had an article in it about something called contra-polar power: a desk lamp plugged into a contra-polar outlet plug would emit not a cone of light, but a cone of darkness! There was even a photograph of this, and my eyes bugged-out when I saw that: What wondrous science was at work here?, I gasped to myself —I really was a naive 14-year old kid! It was, of course, all a huge editorial joke, along with some nifty photo-retouching, but the lead sentence had me hooked: “One of the reasons why atomic energy has not yet become popular among home experimenters is that an understanding of its production requires knowledge of very advanced mathematics.” Just algebra, however, was all that was required to understand contra-polar power.

contra power scan

Contra-polar power ‘worked’ by simply using the negative square root (instead of the positive root) in calculating the resonant frequency in a circuit containing both inductance and capacitance. The idea of negative frequency was intriguing to me (and electrical engineers have actually made sense of it when combined with √-1, but then the editors played a few more clever math tricks and came up with negative resistance. Now, there really is such a thing as negative resistance, and it has long been known by electrical engineers to occur in the operation of electric arcs. Such arcs were used, in the very early, pre-electronic days of radio, to build powerful AM transmitters that could broadcast music and human speech, and not just the on-off telegraph code signals that were all the Marconi transmitters could send. I eventually came to appreciate that the operation of AM/FM radio is impossible to understand, at a deep, theoretical level, without √-1.

When, in my high school algebra classes, I was introduced to complex numbers as the solutions to certain quadratic equations, I knew (unlike my mostly perplexed classmates) that they were not just part of a sterile intellectual game, but that √-1 was important to electrical engineers, and to their ability to construct truly amazing devices. That early, teenage fascination with mathematics in general, and √-1 in particular, was the start of my entire professional life. I wish my dad was still alive, so I could once again thank him for that long-ago subscription.

Math Drives Careers: Author Louis Gross

Gross jacketLouis Gross, distinguished professor in the departments of ecology, evolutionary biology, and mathematics at the University of Tennessee, is the author, along with Erin Bodine and Suzanne Lenhart, of Mathematics for the Life Sciences. For our third installment in the Math Awareness Month series, Gross writes on the role mathematics and rational consideration have played in his career, and in his relationship with his wife, a poet.

Math as a Career-builder and Relationship-broker

My wife is a poet. We approach most any issue with very different perspectives. In an art gallery, she sees a painting from an emotional level, while I focus on the methods the artist used to create the piece. As with any long-term relationship, after many years together we have learned to appreciate the other’s viewpoint and while I would never claim to be a poet, I have helped her on occasion to try out different phrasings of lines to bring out the music. In the reverse situation, the searching questions she asks me about the natural world (do deer really lose their antlers every year – isn’t this horribly wasteful?) force me to consider ways to explain complex scientific ideas in metaphor. As the way I approach science is heavily quantitative, with much of my formal education being in mathematics, this is particularly difficult without resorting to ways of thought that to me are second nature.

The challenges in explaining how quantitative approaches are critical to science, and that science advances in part through better and better ways to apply mathematics to the responses of systems we observe around us, arise throughout education, but are particularly difficult for those without a strong quantitative bent. An example may be helpful. One of the central approaches in science is building and using models – these can be physical ones such as model airplanes, they can be model systems such as an aquarium or they can be phrased in mathematics or computer code. The process of building models and the theories that ultimately arise from collections of models, is painstaking and iterative. Yet each of us build and apply models all the time. Think of the last time you entered a supermarket or a large store with multiple checkout-lines. How did you decide what line to choose? Was it based on how many customers were in each line, how many items they had to purchase, or whether they were paying with a check or credit card? Did you take account of your previous experience with that check-out clerk if you had it, or your experience with using self-checkout at that store? Was the criterion you used some aspect of ease of use, or how quickly you would get through the line? Or was it something else such as how cute the clerk was?

As the check-out line example illustrates, your decision about what is “best” for you depends on many factors, some of which might be quite personal. Yet somehow, store managers need to decide how many clerks are needed at each time and how to allocate their effort between check-out lines and their other possible responsibilities such as stocking shelves. Managers who are better able to meet the needs of customers, so they don’t get disgusted with long lines and decide not to return to that store, while restraining the costs of operation, will likely be rewarded. There is an entire field, heavily mathematical, that has been developed to better manage this situation. The jargon term is “queuing models” after the more typically British term for a waiting line. There is even a formal mathematical way of thinking about “bad luck” in this situation, e.g. choosing a line that results in a much longer time to be checked out than a different line would have.

While knowing that the math exists to help decide on optimal allocation of employee effort in a store will not help you in your decision, the approach of considering options, deciding upon your criteria and taking data (e.g. observations of the length of each line) to guide your decision is one that might serve you well independent of your career. This is one reason why many “self-help” methods involve making lists. Such lists assist you in deciding what factors (in math we call these variables) matter to you, how to weight the importance of each factor (we call these parameters in modeling) and what your objective might be (costs and benefits in an economic sense). This process of rational consideration of alternative options may assist you in many aspects of everyday life, including not just minor decisions of what check-out line to go into, but major ones such as what kind of car or home to purchase, what field to major in and even who to marry! While I can’t claim to have followed a formal mathematical approach in deciding on the latter, I have found it helpful throughout my marriage to use an informal approach to decision making. I encourage you to do so as well.

Check out Chapter 1 of Mathematics for the Life Sciences here.

Alan Turing’s handwritten notebook brings $1 million at auction

turing jacket

Alan Turing: The Enigma

Old journals can be fascinating no matter who they belong to, but imagine looking over the old notebook of the mathematician credited with breaking German codes during WWII.

The Associated Press and other venues reported that a handwritten notebook by British code-breaker Alan Turing, subject of the 2014 Oscar-winning film “The Imitation Game,” a movie based on our book, Alan Turing: The Enigma, brought more than $1 million at auction from an anonymous buyer on Monday. Originally given to Turing’s mathematician-friend Robin Gandy, the notebooks are thought to be the only ones of their kind, and contain Turing’s early attempts to chart a universal language, a precursor to computer code. (In an interesting personal wrinkle, Gandy had used the blank pages for notes on his dreams, noting that, “It seems a suitable disguise to write in between these notes of Alan’s on notation, but possibly a little sinister; a dead father figure, some of whose thoughts I most completely inherited.”)

Andrew Hodges, author of Alan Turing: The Enigma, commented that “the notebook sheds more light on how Turing ‘remained committed to free-thinking work in pure mathematics.'” To learn more about the life of Turing, check out the book here.

Math Drives Careers: Author Oscar Fernandez

We know that mathematics can solve problems in the classroom, but what can it do for your business? Oscar Fernandez, author of Everyday Calculus, takes a look at how knowledge of numbers can help your bottom line.

Why You Should Be Learning Math Even If You Don’t Need It for Your Job

I want to tell you a short story about epic triumph in the midst of adversity. Okay, I’m exaggerating a bit, but hear me out.

A couple of years ago, I approached Boston Scientific—an S&P 500 component—with a crazy idea: let me and a team of students from Wellesley College (a liberal arts college for women) and Babson College (a business school) do consulting work for you. It was a crazy idea because what could I—a mathematician who knew nothing about their business—and some students—who hadn’t even graduated yet—possibly offer the company? Plenty, it turns out, all thanks to our common expertise: mathematics.

Mathematics, often depicted in movies as something pocket-protector-carrying people with less than stellar social skills do, is actually quite ubiquitous. I’d even say that mathematicians are the unsung heroes of the world. Alright, that’s a bit of hyperbole. But think about it. Deep in the catacombs of just about every company, there are mathematicians. They work in low light conditions, hunched over pages of calculations stained with days-old coffee, and think up ways to save the company money, optimize their revenue streams, and make their products more desired. You may never notice their efforts, but you’ll surely notice their effects. That recent change in the cost of your flight? Yep, it was one of us trying to maximize revenue. The reason that UPS truck is now waking you up at 6 a.m.? One of us figured out that the minimum cost route passes through your street.

But we’re do-good people too. We help optimize bus routes to get children to school faster and safer. We’ve spent centuries modelling the spread of disease. More recently, we’ve even reduced crime by understanding how it spreads. That’s why I was confident that my team and I could do something useful for Boston Scientific. Simply put, we knew math.

We spent several weeks pouring over data the company gave us. We tried everything we could think of to raise their revenues from certain products. Collectively, we were trained in mathematics, economics, computer science, and psychology. But nothing worked. It seemed that we—and math—had failed.

Then, with about three weeks left, I chanced upon an article from the MIT Technology Review titled “Turning Math Into Cash.” It describes how IBM’s 200 mathematicians reconfigured their 40,000 salespeople over a period of two years and generated $1 billion in additional revenue. Wow. The mathematicians analyzed the company’s price-sales data using “high-quantile modeling” to predict the maximum amount each customer was willing to spend, and then compared that to the actual revenue generated by the sales teams. IBM then let these mathematicians shuffle around salespeople to help smaller teams reach the theoretical maximum budget of each customer. Genius, really.

I had never heard of quantile regression before, and neither had my students, but one thing math does well is to train you to make sense of things. So we did some digging. We ran across a common example of quantile modelling: food expenditure vs. household income. There’s clearly a relationship, and in 1857 researchers quantified the relationship for Belgian households. They produced this graph:

fernandez 1

That red line is the linear regression line—the “best fit to the data.” It’s useful because the slope of the line predicts a 50 cent increase in food expenditure for a $1 increase in household income. But what if you want information about the food expenditure of the top 5% of households, or the bottom 20%? Linear regression can’t give you that information, but quantile regression can. Here’s what you get with quantile regression:

fernandez 2

The red line is the linear regression line, but now we also have various quantile regression lines. To understand what they mean let’s focus on the top-most dashed line, which is the 95th percentile line. Households above this line are in the 95th percentile (or 0.95 quantile) of food expenditure. Similarly, households below the bottom-most line are in the 5th percentile (or 0.05 quantile) of food expenditure. Now, if we graph the slopes of the lines as a function of the percentile (also called “quantile”), we get:

fernandez 3

(The red line is the slope of the linear regression line; it doesn’t depend on the quantile, which is why it’s a straight line.) Notice that the 0.95 quantile (95th percentile) slope is about 0.7, whereas the 0.05 quantile (5th percentile) slope is about 0.35. This means that for every $1 increase in household income, this analysis predicts that households in the 95th percentile of food expenditure will spend 70 cents more, whereas households in the 5th percentile will spend only 35 cents more.

Clearly quantile regression is powerful stuff. So, my team and I went back and used quantile regression on the Boston Scientific data. We came up with theoretical maximum prices that customers could pay based on the region the product was sold in. As with IBM, we identified lots of potential areas for improvement. When my students presented their findings to Boston Scientific, the company took the work seriously and was very impressed with what a few students and one professor could do. I can’t say we generated $1 billion in new revenue for Boston Scientific, but what I can say is that we were able to make serious, credible recommendations, all because we understood mathematics. (And we were just a team of 5 working over a period of 12 weeks!)

April is Mathematics Awareness Month, and this year’s theme is “math drives careers.” After my Boston Scientific experience and after reading about IBM’s success, I now have a greater appreciation of this theme. Not only can mathematics be found in just about any career, but if you happen to be the one to find it (and use it), you could quickly be on the fast track to success. So in between celebrating March Madness, Easter, Earth Day, and April 15th (I guess you’d only celebrate if you’re due a tax refund), make some time for math. It just might change your career.

Photo by Richard Howard.

Photo by Richard Howard.

Oscar Fernandez is the author of Everyday Calculus. He is assistant professor of mathematics at Wellesley College.

March Mathness 2015: The Wrap Up

balls

The champion has been crowned! After an eventful and surprising March Madness tournament, Duke has been named the new NCAA national champion.

A year of bragging rights goes to PUP paperbacks manager Larissa Skurka (98.6 percent) and PUP executive math and computer science editor Vickie Kearn (98.4 percent), who took first and second place in our ESPN bracket pool. Congrats to both! Check out all of the results here.

As we wrap up March Mathness, here are two final guest posts from basketball fans who used math and Tim Chartier‘s methods to create their brackets.

 Swearing by Bracketology

By Jeff Smith

My name is Jeff Smith, and I’ve been using Tim Chartier’s math algorithms to help with my March Madness brackets for several years now. I met Tim when we were traveling the ‘circuit’ together in creative ministries training. You may only know Tim for his math prowess, but I knew him for his creativity before I knew he was a brilliant mathematician. He and his wife, Tanya, are professional mimes, and his creativity is genius too.

Several years ago, he mentioned his method for picking brackets at a conference where we were doing some training together. He promised to send me the home page for his site and I could fill out my brackets using his parameters and formula. I was excited to give it a shot. Mainly, because I am part of a men’s group at our church that participates in March Madness brackets every year. Bragging rights are a big deal…for the whole year. You get the picture.

Also, I have two boys who did get one of my genes: the competitive edge. I sat down and explained the process. Because they did not know Tim, they were a little more skeptical, but I promised it wouldn’t hurt to try. That year, in a pool of 40+ guys, we all finished in the top ten. We were all hooked!

Since then, I have contacted Tim each year and reminded him to send me the link to his site where I could put in our numbers to fill out our brackets. Generally, the three of us each incorporate different parameters because we have different philosophies about the process. It has become a family event, where we sit around the dinner table; almost ceremonially, and we take our output and place them in the brackets. The submission is generally preceded by trash talking, prayer, and fasting. (Well, probably not the fasting, because we fill up with nachos and chips during the process.)

Jeff post

Men of March Mathness: Jeff, Samuel, Ben Smith.

This year, I was in South Africa on a mission trip during the annual ritual. Thank God for video chatting and internet access. Halfway across the world, we were still able to be together and place our brackets into the pool. It was such a wonderful experience. While my boys veered from the path, picking intuitively instead of statistically, I didn’t stray far. (I was strong!) If it wouldn’t have been for Villanova, whom I will never choose again in a bracket, I would be leading the pack. But, I’m still in the top ten of the men’s bracket at my church, with an outside shot of winning. In the Princeton bracket, I’m doing even better because I stayed away from the guessing game a little more.

I do not follow college basketball during the season. I’m from central Pennsylvania, and Penn State doesn’t have a good basketball team. So, I have no passion for the basketball season. Periodically, I’ll watch a game because my boys are watching, but generally, basketball season is the long wait until baseball season. (Go Pirates!) So, March Mathness has saved my reputation. It makes me look like a genius. Other guys in the group are looking at my bracket for answers. My boys and I are sworn to secrecy about the formula. The only reason I write this is because I’m sure none of them read this blog! But I’m thankful for Tim and the formula and the chance to look good in front of friends. I have never won the pool, however, if you factor my finishes over the course of the years I have been using Tim’s formula, I have the best average of all the guys.

 

 What Do Coaches Have to Do with It?

By Stephen Gorman, College of Charleston student

PUPSelfie2

It’s that time of year again. The time of year when everyone compares brackets to see who did the best. But if your bracket was busted early, don’t worry — you’re not the only one. In fact, nobody came out of the tournament with a perfect bracket.

The unpredictability of these games is an inescapable fact of March Madness. This tournament is so incredibly unpredictable that some people are willing to give out billions to anyone who can create a perfect bracket; Warren Buffett is one of these people. So is he crazy? Or does he realize your odds of creating a perfect bracket are 52 billion times worse than winning the Powerball. In layman’s terms – if you think playing the lottery is crazy, trying to create the perfect bracket is insane.

However, once you can accept the statistics, predicting March Madness becomes a game of bettering you’re odds – and there are many predictive models that can help you out along the way. Some of these models include rating methods, like the Massey method, which takes into account score differentials and strength of schedule. In addition to this, there are weighting methods that can be applied to rating methods; these take into account the significance of particular games and even individual player statistics. However, I noticed there is one thing missing from these predictive models: a method that quantifies the value of a good coach. In order to take into account the importance of a coach, a fellow researcher (John Sussingham) and I decided to create our own rating system for coaches.

Using data available from SportsReference.com, we made a system of rating that incorporated such factors as the coach’s career win percentage, March Madness appearances, and the record of success in March Madness. But before we implemented it, we wanted to justify that it was, indeed, a good way to quantify the strength of a coach. In order to do this, we tested the coach ratings in two ways. The first way being a comparison between how sports writers ranked the top 10 College Basketball coaches of all time and what our coach ratings said were the best coaches of all time. The second way was to test how the coach ratings did by themselves at predicting March Madness.

The comparison of the rankings are shown in the table below:

Rank Our Results CBS Sports Results Bleacher Report Results
1 John Wooden John Wooden John Wooden
2 Mike Krzyzewski Mike Krzyzewski Bobby Knight
3 Adolph Rupp Bob Knight Mike Krzyzewski
4 Jim Boeheim Dean Smith Adolph Rupp
5 Dean Smith Adolph Rupp Dean Smith
6 Roy Williams Henry Iba Jim Calhoun
7 Jerry Tarkanian Phog Allen Jim Boeheim
8 Al McGuire Jim Calhoun Lute Olson
9 Bill Self John Thompson Eddie Sutton
10 Jamie Dixon Jim Boeheim Jim Phelan

It is clear from the table above that there are striking similarities between all three rankings. This concluded our first test.

For the second test, we decided to use the coach ratings to predict the last fourteen years of March Madness. The results showed that over the last fourteen years, on average, coach ratings had 68.4 precent prediction accuracy and an ESPN bracket score of 946. As a comparison, the uniform (un-weighted) Massey method of rating (over the same timespan) had an average prediction accuracy of 65.2 precent and an average ESPN bracket score of 1006. Having a higher prediction accuracy, but lower ESPN bracket score essentially means that you have predicted more games correctly in the beginning of the tournament, but struggle in the later rounds. This comes to show that not only are these ratings good at predicting March Madness, but they stand their ground when compared to the effectiveness of very popular methods of rating.

To conclude this article, we decided that, this year, we would combine both the Massey ratings and our Coach ratings to make a bracket for March Madness. Over the last fourteen years, the combination-rating had an average prediction accuracy of 66.33 percent and an average ESPN bracket score of 1024. It’s interesting to note that while the prediction accuracy went down from just using the Coach ratings, the ESPN bracket score went up significantly. Even more interestingly, both the prediction accuracy and the ESPN Bracket score were better than uniform Massey.

This year, the combination-ratings had three out of the four Final Four teams correctly predicted with Kentucky beating Duke in the Championship. However, the undefeated Kentucky lost to Wisconsin in the Final Four. Despite this, the combination-ratings bracket still did well, finishing in the 87.6th percentile on ESPN.

Math Drives Careers: Author Ignacio Palacios-Huerta

Logical thinking, analytical skills, and the ability to recognize patterns are crucial in an array of fields that overlap with mathematics, including economics. But what does math (or economics, for that matter) have to do with the world’s most popular sport? Economist Ignacio Palacios-Huerta’s recent book, Beautiful Game Theory: How Soccer Can Help Economics  made a splash during the last World Cup, showing how universal economic principles can be understood through soccer. Read on for his thoughts on why the language of modern economics, including behavioral economics, is mathematics.

The Role of Mathematics in my Life as an Economist

To describe the role of mathematics in my life as an economist, I first need to explain what, to me, Economics is all about. So let me take you to one of my favorite books, A Treatise of Human Nature, written almost 300 years ago by David Hume.

Beautiful Game TheoryIn the introduction Hume writes, “‘Tis evident that all the sciences have a relation, more or less, to human nature … Even Mathematics, Natural Philosophy, and Natural Religion, are in some measure dependent on the science of Man, [which is] the only solid foundation for the other sciences”. By the science of man Hume means the understanding of all facets of human nature, including preferences, senses, passions, imagination, morality, justice, and society. This science applies wherever men are making decisions, be it running public institutions or countries, as employees in firms, or as individuals investing in education, taking risks in financial markets, or making family decisions. This science of man is thus what one may initially be tempted to call Economics for, as George Bernard Shaw puts it in my favorite definition, “Economy is the art of making the most of life”.

But of course this definition is incomplete because other social sciences (e.g., sociology, history, psychology, political science) are also concerned with human behavior. So what makes Economics “different”? Here is the difference: the difference is not the subject matter but the approach. The approach is totally different, and a very mathematical one. As such, mathematics plays a critical role in the life of any economist.

Let me elaborate. Continuing with Hume, it turns out that he also anticipated our methodological approach in modern Economics: observation and logical arguments. Which can be translated as: data and data analysis (what we call econometrics), and mathematics, for mathematics is, after all, the language of logic. So in Economics, as in physics, we write down our ideas and theories in mathematical terms to make logical arguments, and then we use more math (statistical, econometrics, etc) to check whether the data appear to be consistent with the theoretical arguments. If they are, the evidence can be said to support the theory; if they aren’t, the theory needs to be refined or discarded. Yes, lots of math and related techniques provide what is our distinct “economics approach to human behavior.” It is not the subject matter but the approach that is different, and it heavily relies on mathematics.

To economists and other social scientists, mathematics has many methodological virtues: it can lend precision to theories, can uncover inconsistencies, can generate hypothesis, can enable concision and promote intelligibility, and can sort out complex interactions, while statistical and econometric analysis can organize and carefully interpret voluminous data.

None of this is obvious when you begin studying Economics (“Why should I take all this math, statistics and econometrics? Why all this pain?”). But I think most of us soon learn to appreciate that the language of modern economics is mathematics, and that it is rightly so. And this is not math for the sake of math (as in pure mathematics), but math with a purpose: modeling human behavior.

Let me conclude by saying that since the economic approach is applicable to all human behavior, any type of data about human activity can be useful to evaluate economic theories. This includes, why not, sports data, which in many ways can be just perfect for testing economic theories: the data are abundant, the goals of the participants are clear, the outcomes are easy to observe, the stakes are high, and the subjects are professionals with experience. If a theory is “correct”, sport is a good setting to check it.

So just as data involving falling stones and apples were useful to Galileo Galilei and  Isaac Newton to test for the first time theories that were important in physics, data from sports can be useful in Economics to do exactly the same. As such in some of my contributions to Economics I have used math to develop theoretical models, and further mathematical tools applied to this type of data to test them.

Mathematics Awareness Month 2015: Math Drives Careers

Internet search, pharmaceuticals, insurance, finance, national security, medicine, ecology. What is the link between these diverse career fields? Students graduating with a mathematical sciences degree can find a professional future in all of these fields, and a wide range of others as well. This year’s Mathematics Awareness Month takes a step out of the classroom to show just where mathematics can lead after graduation.

Mathematics Awareness Month is an annual celebration dedicated to increasing public understanding of and appreciation for mathematics. The event, which started in 1986 as Mathematics Awareness Week, adopts a different theme each year. This year’s theme is “Math Drives Careers,” and PUP is excited to bring you a series of guest posts from our authors. Check back all this month for posts about using math to raise revenues, to understand sports and economics, and to solve complex problems.

The organizers of Mathematics Awareness Month explain the importance of mathematics in today’s workforce:

“Innovation is an increasingly important factor in the growth of world economies. It is especially important in key economic sectors like manufacturing, materials, energy, biotechnology, healthcare, networks, and professional and business services. The advances in and applications of the mathematical sciences have become drivers of innovation as new systems and methodologies have become more complex. As mathematics drives innovation, it also drives careers.”
Check out this official Mathematics Awareness Month poster, which includes career descriptions for 10 individuals who used their love for math to find rewarding careers:

 

MAM2015_8.5x11

Follow along with @MathAware and take a look at Math Awareness Month on Facebook.

Davidson student hangs onto 97 percent March Madness ranking

Are you still mourning the loss of your perfect bracket after the multiple upsets this March Madness season? Even before the Villanova and NC State match up on Saturday, 99.3 percent of brackets were busted. As experts deem a perfect March Madness bracket impossible, having a nearly perfect bracket is something to brag about. Today, we hear from David College student Nathan Argueta, who argues that knowing a thing or two about math can help with March Madness strategy.

balls

March Mathness: Calculating the Best Bracket

First and foremost… I am far from a Math Major and, prior to this class, the notion that math and sports going hand in hand seemed much more theoretical than based in reality. Now, 48 games later and a 97.2% ranking percentage on ESPN’s Bracket Contest has me thinking otherwise.

In Finite Math, we have explored the realms of creating rankings for teams based on multiple factors (win percentage, quality wins, etc.). Personally, I also take into account teams’ prior experience in the NCAA Tournament. Coaches with experience in the Sweet 16, Final Four, and Championship Game (like Rick Pitino out of Louisville) also factored into my decisions when deciding close games. Rick Pitino has made the Sweet Sixteen for each of the past four years. With a roster whose minutes are primarily distributed amongst second and third year players (players who have had success in the NCAA tournament in the past couple of years) I found it difficult to picture Louisville losing to either UCI, UNI, or even the upcoming battle against upstart NC State (who have successfully busted the majority of brackets in our class’s circuit by topping off Villanova).

In theory, the quest to picking the best bracket on ESPN begins and ends with establishing rankings for each team in the contest. Sure there are four of each seeding (1’s, 2’s, etc.), yet these rankings are very discombobulating when attempting to decide which team will win between a 5th seed and a 12th seed or a 4th seed and a 13th seed. One particular matchup that I found extremely interesting was the one between 13th seeded Harvard and 4th seeded UNC. Gut reaction call—pick UNC. UNC boasts a higher ranking and has ritual success in the postseason. But hold on—Harvard had a terrific record this year (much better than UNC’s, albeit in an easier conference). The difficult thing about comparing Harvard and UNC, however, became this establishment of difficulty of schedule. I nearly chose Harvard, were it not for the fact that Harvard got beaten by about 40 points against UVA while UNC put up more of a fight and only lost by 10 points.

In order to pick the perfect bracket (which mind you, will never happen), categorizing and ranking teams based on their wins against common opponents with prior sports knowledge is imperative. My school pride got the better of me when I chose Davidson to advance out of the Round of 64 against Iowa simply because I disregarded factors like momentum, size, and location. Looking back, it is no wonder that Davidson lost by over 30 points in what many pundits were looking to be a potential upset match. While mathematically our team’s chances could have more than competed against Iowa, in reality our season was spiraling downwards out of control since the second round of the Atlantic 10 Tournament in which we hardly beat out a surprising La Salle team and got annihilated by an injury plagued VCU team that we shut-out just nine days before. Moral of the story… brackets will be brackets and while math can certainly guide you towards a higher ranking in your class pool, you can kiss perfection good-bye. This is March Madness.