Interview with Sean B. Carroll, author of The Serengeti Rules

CarrollIn the fields of biological and environmental studies, Sean B. Carroll has made a name for himself not only as a scientist, writer, and educator, but as a storyteller. In his newest book, The Serengeti Rules: The Quest to Discover How Life Works and Why It Matters, Carroll argues that the most critical thing we have learned about human life at the molecular level is that everything is regulated.

Carrol uses medical analogies, comparing the current blight on nature to a disease that ravages the body. The book will leave readers considering life on several scales, both personal and global. Recently he took the time to answer some questions about the book:

One of the central themes of your book is that “everything is regulated” in life. What does that mean?

SC: What it means is that at all scales of life the numbers of things are controlled. For example, in our bodies, the concentration of every kind of chemical – hormones, salts, enzymes and fats, and the numbers of every kind of cell –red cells, white cells and so on, are maintained within certain ranges by regulation. Similarly, in nature, the numbers and kinds of animal and plants in a given place are regulated.

Why is all of this regulation important?

SC: Regulation is very important because diseases (heart disease, cancer and so on) are generally abnormalities of regulation, when too little or too much of something is made. Likewise, in nature, when key species are lost or removed, too many or too few individuals of other species persist, and that habitat becomes unhealthy and may collapse. So learning the “rules of regulation” is very important to both medicine and conservation.

What have we learned about those rules?

SC: A century-long quest of biology has been to discover how life works, and that entails the deciphering of the “rules of regulation” in the body and in nature at large. The stories that make up the book are about those pioneers who tackled the mysteries of regulation and discovered important rules that have had huge impacts in medicine, ecology and conservation.

The scientists portrayed in The Serengeti Rules are admirable, sometimes heroic figures. Why did you choose to organize the book around their stories?

SC: I am a firm believer in the power of stories. Science is far more enjoyable, understandable, and memorable when we follow scientists all over the world and share in their struggles and triumphs.

You use an analogy from sports to explain how scientists have figured out how to treat many diseases. How does that analogy apply to medicine?

SC: In the body, the key “players” are molecules that regulate a process. To intervene in a disease, we need to know what players are injured or missing or what rules of regulation have been broken. The task for biologists is to identify the important players in a process, figure out the rules that regulate their action, and then design medicines that target the key players. In the book, I tell the stories of just how that was done to make such dramatic progress against heart disease and cancer.

4925392488_70abf4ed4e_z

CC Image courtesy of Celso Flores on flickr

Your book is called The Serengeti Rules. What are those rules?

SC: Just as there are rules that regulate the numbers of different kinds of molecules and cells in the body, there are ecological rules that regulate the numbers and kinds of animals and plants in a given place. I have called these the “Serengeti Rules” because that is one place where they have been worked out and they determine, for example, how many lions, or buffalo, or elephants live on an African savanna.

But these rules apply all over the globe, in oceans, rivers, and lakes, as well as on land.

Do these rules apply then to conserving and restoring species?

SC: Absolutely. But in contrast to the considerable care and expense we gladly undertake in applying molecular rules to human medicine, we have done a very poor job in considering and applying these Serengeti Rules to human affairs. For centuries we have hunted, fished, farmed, forested, and settled wherever we could, with no or very little grasp of altering other species. For a long time, we did not know any better, but now we do. So minding these Serengeti Rules may have as much or more to do with our future welfare than all of the molecular rules we may ever discover.

But as you describe in several chapters, there have been some encouraging successes in restoring species and habitats

SC: Yes, and I thought it was very important to tell those stories, to show that even war-torn and devastated places like Gorongosa National park in Mozambique could rebound given time, protection, and the efforts of just a small band of extraordinarily dedicated people.

You visited Gorongosa in the course of writing this book. What was that experience like?

SC: Life-changing. The people behind the Gorongosa Restoration Project are so inspiring, and the magnitude of the recovery in just ten years is astounding and so encouraging. If Gorongosa can be rescued from utter disaster, we should all take heart that we can restore other places and species.

8542170328_e015a4a3bd_m

CC image courtesy of F Mira on Flickr

When readers close The Serengeti Rules after finishing it, what do you hope they will be feeling?

First of all, I hope that they feel inspired by the stories of some exceptional people who tackled and solved great mysteries. Second, that they feel enriched with fresh insights into the wonders of life at different scales. Third, that they feel more hope for the future — that there is time to change the road we’re on. And finally, that they can’t wait to tell their friends to read the book!

You have had a very distinguished career as a molecular biologist. What inspired you to delve into ecology and conservation and write this book?

First, a desire to explore the bigger picture of life. When I gazed upon the Serengeti for the first time, I was as enchanted as any tourist, but I did not understand what I was looking at. For someone who has spent decades figuring out how complex, invisible things worked, that was a bit unsettling and embarrassing. So I dove into what was known and realized that the rules of ecology and even how they were discovered had some parallels to what we understood about life at the molecular level. These parallels had never been drawn; this book is an attempt to do that in the context of explaining why understand all of the rules matters.

And second, a sense of urgency. The disappearance of nature is an existential crisis for biology and humanity. As much as I love the world of DNA and cells, it felt a contradiction – to care so much about life at one level and to ignore what was happening to life at large. It is time to look up from the microscope.

Sean B. Carroll is an award-winning scientist, writer, educator, and executive producer. He is vice president for science education at the Howard Hughes Medical Institute and the Allan Wilson Professor of Molecular Biology and Genetics at the University of Wisconsin–Madison. His books include Endless Forms Most Beautiful, Brave Genius, and Remarkable Creatures, which was a finalist for the National Book Award for nonfiction. His most recent book is The Serengeti Rules. He lives in Chevy Chase, Maryland.

Upcoming event with Oliver Morton and Future Tense

Planet

On Monday, February 1 Oliver Morton, author of The Planet Remade, will partner with Katherine Mangu-Ward at a lunch hosted by Future Tense to discuss the potential role of geoengineering in climate change in Washington D.C.. If you would like to attend, RSVP here. In the meantime, learn more about the topic on the Future Tense blog, excerpted here:

Geoengineering, the deliberate hacking of Earth’s climate, might be one of the most promising potential responses to climate change, especially in the absence of significant carbon emission reductions. It’s also one of the most controversial. We engineered our planet into our environmental crisis, but can we engineer our way out with a stratospheric veil against the sun, the cultivation of photosynthetic plankton, or fleets of unmanned ships seeding the clouds?

Carl Wunsch: Has oceanography grown too distanced from the ocean?

Wunsch jacketWith the advent of computers, novel instruments, satellite technology, and increasingly powerful modeling tools, we have vast knowledge about the ocean. Yet because of technological advances, a new generation of oceanographers have grown increasingly distanced from the object of their study. Physics Today recently published a Q&A with Carl Wunch, author of Modern Observational Physical Oceanography: Understanding the Global Ocean. According to Wunch, the field of oceanography cannot rely on theoretical truths alone. In this interview, he emphasizes the importance of the discipline’s observational roots:

Before Modern Observational Physical Oceanography: Understanding the Global Ocean (Princeton University Press, 2015) was published, Carl Wunsch had already made “an immense contribution” to the field, writes Stuart Cunningham in his January 2016 review of the book for Physics Today. Cunningham counts more than 250 papers and “an astonishing list of master’s and PhD students whose own merits are widely recognized.”

Modern Observational Physical Oceanography is Wunsch’s fifth book. Cunningham writes that it will be “of value to anyone wishing to know more about how to observe the ocean, interpret the data, and gain insights on ocean behavior and on how oceanographers reach their understanding of it.”

Carl Wunsch

Carl Wunsch

Wunsch was the Cecil and Ida Green Professor of Physical Oceanography at MIT before his retirement in 2013; he is now a visiting professor at Harvard University. He received his PhD at MIT under the tutelage of renowned oceanographer Henry Stommel. Among other things, Wunsch has studied the effects of ocean circulation on climate.

Physics Today recently caught up with Wunsch to discuss Modern Observational Physical Oceanography and his views on climate change issues.

PT: What motivated you to take up this book after retiring from MIT?

WUNSCH: In talking to students and postdocs, and in teaching, it became clear that we are in an era increasingly dominated by modelers and theoreticians, for many of whom observations are something downloaded from the Web and then taken as a “truth.” The field of physical oceanography and its climate components has become ever more remote from its observational roots.

In the past 25 years physical oceanography developed a number of highly useful, up-to-date, but theoretically based textbooks. There was no book known to me to which one could direct a colleague or student that emphasized the interesting complexities of the very diverse data types oceanographers now have available. The beautiful theories emphasized by the existing textbooks can produce the misperception of a laminar, essentially steady, ocean and in the extreme case, one reduced to a “conveyor belt.”

Read the full interview in Physics Today, here.

Mark Denny discusses Ecological Mechanics

According to Mark Denny, the time is right for biomechanics to be folded into the broader study of ecology. In Ecological Mechanics, Denny explains how the principles of physics and engineering can be used to understand the remarkable ways plants and animals interact with each other and their surroundings, and how this controls where species can survive and reproduce. Recently, Denny shared some thoughts on the emerging discipline and his new book:

Ecological MechanicsEcological mechanics is not something I’ve heard of. Is it a new field of study?

MD: Yes and no. Biomechanics, the field in which I was raised, has traditionally focused on trying to understand how individual plants and animals work: how they are shaped to perform certain functions, what materials they are constructed from, how they interact with wind and moving water. But this biomechanical perspective has matured to the point where it can now be productively applied to questions of how individuals interact. In other words, the time is right for biomechanics to be folded into the broader study of ecology. That’s the basic idea of the book: to reveal to ecologists can they benefit from incorporating some physics and engineering in their approach, to challenge biomechanics to extend their expertise beyond the individual, to bring two well established disciplines together.

Can you give me a good example of ecological mechanics in action?

MD: I’d be delighted to! Let’s take coral reefs. They are an iconic example of how an assemblage of plants and animals interact to build a community that can grow and persist in a physically stressful environment, in this case the wave-beaten shores of tropical islands. But coral reefs exist in a delicate balance. Fish that shelter among branching coral colonies eat the seaweeds that otherwise would outcompete corals for space on the reef. If too many of the branching corals are broken by waves, the fish population declines, and the seaweeds take over. So, the state of the reef is a complex interaction between fluid mechanics (which governs wave forces), solid mechanics (which governs the ability of corals to resist those forces), and ecology, (which accounts for the community-wide consequences of coral breakage). But ecologists have had no way to predict how these interactions will play out as climate changes. Fortunately, ecological mechanics can now provide the answer. By taking into account both the predicted increase in intensity of tropical cyclones and the reduction in strength of corals due to ocean acidification, we can use the principles of engineering to accurately predict the change in species composition on a reef, and, from that, to use ecological principles to predict the change in competitive interactions between corals and seaweeds.

What’s the scope of the subject matter?

MD: Broad! In the first section we cover basic concepts from the physics of diffusion to fluid mechanics. We then use those concepts to understand the forces that plants and animals encounter both on land and in water, how animals move, and how the environment affects the temperature of everything, both living and dead. Then there’s a section on the mechanics of materials: how the chemical composition of a structure determines its stiffness and strength, how the shape of the structure affects the forces imposed on materials, and how structures interact in dynamic fashion with their surrounds. We then finish up by tying together the information from the previous sections. We explore how variation in the environment affects the plants’ and animals’ performance, and how that variation changes through time and space. We delve into the statistics of extremes (which can be used to predict the likelihood of ecological catastrophes), and we see how physics causes ecological patterns to emerge even in physically uniform habitats. There’s plenty here for both terrestrial and aquatic biologists, at scales ranging from the molecular to the global.

What tools will I take away from reading Ecological Mechanics?

MD: Great question. In a nut shell, you should come away with enough practical knowledge not only to understand the ecomechanics literature, but also to start working as a practicing ecomechanic. The chapter on thermal mechanics, for instance, teaches you how to construct a head-budget model for an organism that you can use to predict body temperature in any environment. The chapter on scale transition theory provides a recipe for predicting how the average performance of a population will change as the population spreads through space.

Sounds pretty technical, though. How much of a background in physics, math, and engineering would one need?

MD: Not much, actually. If you’ve had a course in basic physics somewhere along the line, and remember a reasonable amount of the algebra you learned in high school, the ideas presented here are should be easy to absorb. My own formal background in math and physics is absolutely minimal. Most of what I know about engineering I learned by explaining it to myself, and I think that has put me in a good position to explain this material to others. Readers are likely to be pleasantly surprised at how far a little bit of mathematics and basic physics can take them.

Given the scope and level of the discussion, what do you see as the audience for Ecological Mechanics?

MD: I wrote this text with several audiences in mind. First, there are ecologists and biomechanics actively involved in research, everyone from undergraduates on up. I feel certain that the breadth of information presented here will provide them with new perspectives on their subjects, new ways of thinking about the ways in which plants and animals interact with each other and with their environment, and the tools to explore those thoughts. The text can also be used as the basis for an upper-level undergraduate course. Combining as it does biomechanics and ecology, it could easily fit into a general curriculum in biology. It could equally well provide accessory information for other courses; various chapters could be used in isolation in a general biomechanics course, for instance, or a general course in ecology. And lastly, I hope there is an audience among folks who are just interested in science. Ecological mechanics involves such a compelling mixture of physical and biological science; I’m hoping that people will pick up this book just to scratch the itch of curiosity.

How did someone with little background in math and physics end up in a field like ecological mechanics?

MD: Pure serendipity. Like so many people, I went to college planning to go to medical school. I majored in zoology, avoided math, and put off taking physics until my senior year, and even then I took it pass/fail. But I found that physics offered a different (and intriguing) way of thinking about the world. And that really clicked into place when, in my final semester, I took a biomechanics course from Steve Wainwright and Steve Vogel. They showed me how the physics perspective could be applied to biology, and I’ve been riding that wow!! feeling ever since. I’d love to pass that excitement along to others, and books like this are best way I know to do that.

Mark Denny is the John B. and Jean DeNault Professor of Marine Sciences at Stanford University’s Hopkins Marine Station in Pacific Grove, California. His books include Biology and the Mechanics of the Wave-Swept Environment, Air and Water, and How the Ocean Works.

Conversations on Climate: How geoengineering has been used in the past

PlanetIn The Planet Remade, Oliver Morton argues that geoengineering, the process by which Earth’s systems are manipulated, can be used in a positive way to address the problems caused by man-made climate change. Geoengineering is nothing new. Chapter 7 of The Planet Remade describes how it was used in the twentieth century to feed a growing population. A summary:

At the end of the nineteenth century it became apparent that the yield of wheat would soon fall short of the demand. Sir William Crookes, one of the leading chemists of the time, gave a speech in 1898 on the subject. The number of people who wanted to eat wheat was increasing, but by that point there was no more land on which to grow it. The solution? Increasing the amount of nitrogen in the soil to increase the amount of wheat that a given parcel of land could yield. If this wasn’t done, Crookes warned, the world would face starvation.

Nitrogen was fixed on as the key to a solution because it is a necessary component of photosynthesis. It exists in the air we breathe in the inert form of two identical atoms attached to one another. In order to aid in sustaining life, it must be detached and fixed to some other element. This happens when bacteria in plants twist nitrogen molecules and insert hydrogen molecules into the resulting spaces, turning the nitrogen into ammonia. Later, the nitrogen is returned to its inert form. The process by which nitrogen is fixed and then unfixed makes up the nitrogen cycle. As this process has proceeded uninterrupted by humans for billions of years, it has been one component in supporting increasingly more complex life forms on Earth.

Crookes was hopeful that the problem could be solved. He called on scientists to figure out a way to fix nitrogen industrially. Fritz Haber, a professor at the University of Freiburg, rose to the challenge. He and his laboratory technicians created a process by which fixed nitrogen was created by passing a continuous stream of nitrogen and hydrogen over a hot catalyst at very high pressure. His colleague Carl Bosch scaled the process up so that it could be used on an industrial scale. The process was quickly adopted globally to produce more food. By the end of the 1960s, the amount of nitrogen fixed by the Haber-Bosch process exceeded that fixed by all the microbes in the world’s soil. Both men won the Nobel Prize for their efforts. Their discoveries have had profound implications beyond the world of agriculture.

The problem identified by Crookes had been solved, but at a cost. One cost can be seen in the Gulf of Mexico every summer. Between the 1960s and 1990s, the flow of nitrogen out of America’s heartland, through the Mississippi and into the Gulf has doubled. This abundant supply of nitrogen makes ideal food for photosynthetic algae to flourish, resulting in colossal algal blooms. As they decompose, they consume all the oxygen in the water, leaving none to support other life forms. As a result, large swaths of the Gulf of Mexico become dead zones every summer.

Does this episode in history prove that humans can’t be trusted with geoengineering? Or can it be used more responsibly in the future to address the challenge of climate change? To answer that question, check out The Planet Remade here.

Conversations on Climate: Paul Wignall says climate crisis is nothing new

NEW climate pic

Climate Change: We’ve Been Here Before
by Paul Wignall

The world’s climate is always changing and always has. Even during the past few centuries we have seen substantial variations, but only recently have we begun to blame ourselves for them. But how much natural variability is there, and just how extreme can climate change be? To gain some longer-term perspective on the climate’s variability we can look back through geological time, particularly at catastrophic events known as mass extinctions. In my recent book, The Worst of Times, I focus on an 80 million year interval when life on Earth suffered one disaster after another. These catastrophes included the Permo-Triassic mass extinction, the worst crisis that life has ever faced. It is not very reassuring to find that these extinctions all coincide with intervals of rapid global warming.

rocks from Permian-Triassic boundary in Guizhou

Sedimentary rocks from the Permian-Triassic boundary in Guizhou Province, SW China that record evidence for the greatest of all mass extinctions.

So, are we all going to hell in a hand basket? Well, probably not just yet. The story from the past is much more nuanced than this and I believe there is substantial hope that all is not so bad today. The reason is that the worst 80 million years happened a long time ago and more recently (in the past 100 million years) things have got a lot better. At one time all the world’s continents were joined together into a single supercontinent called Pangea. This seems to have created a global environment that was very fragile. Every time there was a phase of giant volcanic eruptions in Pangea, climates changed rapidly, the oceans stagnated and life began to suffer. The cause seems to be not the actual lava flows themselves, although these were very large, but the gases that bubbled out of them, especially carbon dioxide, everyone’s (not so) favorite greenhouse gas. As I explain in my book the effects of these gases on climate and oceans changed global environments in a disastrous way. Rapid increases in global temperature were part of the story and the results were some of the hottest climates of all time. The results for life were profound; dominant groups went extinct and new groups appeared only to have their brief hegemony terminated by the next disaster. By the time these waves of extinction were over the dinosaurs were the newest kids on the block. They went on to thrive and get very large whilst scurrying around at their feet were a group of small furry creatures. These were the mammals and they would have to wait a long time for their turn.

basalt flows

A landscape entirely made of giant basalt flows from the Permian Period, Yunnan Province, SW China.

Dinosaurs were the dominant animals on Earth for over 140 million years and it is often thought that they were somehow competitively successful but I think they were just very lucky. They appeared at a time when the Earth was rapidly getting better at coping with climatic changes caused by giant volcanism. There were plenty of episodes of large-scale eruptions during the time of the dinosaurs and none caused major extinctions. The key thing was that Pangea was splitting up and separate continents were forming – the familiar continents of today’s world. Such a world seems better able to cope with rapid increases in atmospheric gases because feedback mechanisms are more effective. In particular rainfall is more plentiful when the continents are small and nowhere is too far away from the sea. Rain scrubs the atmosphere and thus alleviates the problems.

However, the $64,000 question is how quickly this feedback can happen. The world seems better at doing this today than it was in deep time but maybe we are adding the carbon dioxide too fast to our atmosphere, maybe we are swamping the system? This is a hard question to answer, we’re not sure how much gas came out during the giant eruptions of the past and so it’s hard to directly compare with the present day pollution rates. What we do know is that past mega-eruptions have been remarkably damage-free. For over 100 million years, our world has been a benign place.

Oh, except for a remarkably large meteorite impact that was bad news for the dinosaurs, but that’s another story.

Wignall jacketPaul B. Wignall is professor of palaeoenvironments at the University of Leeds. He has been investigating mass extinctions for more than twenty-five years, a scientific quest that has taken him to dozens of countries around the world. The coauthor of Mass Extinctions and Their Aftermath, he lives in Leeds.

Conversations on Climate: Economists consider a hotter planet on PBS Newshour

NEW climate picIn Climate Shock, economists Gernot Wagner and Martin Weitzman tackle the likely prospect of a hotter planet as a risk management problem on a global scale. As 150 world leaders meet in Paris for the UN Conference on Climate Change, both took the time to speak to PBS Newshour about what we know and don’t know about global warming:


Everyone is talking about 2 degrees Celsius. Why? What happens if the planet warms by 2 degrees Celsius?

Martin L. Weitzman: Two degrees Celsius has turned into an iconic threshold of sorts, a political target, if you will. And for good reason. Many scientists have looked at so-called tipping points with huge potential changes to the climate system: methane being released from the frozen tundra at rapid rates, the Gulfstream shutting down and freezing over Northern Europe, the Amazon rainforest dying off. The short answer is we just don’t — can’t — know with 100 percent certainty when and how these tipping points will, in fact, occur. But there seems to be a lot of evidence that things can go horribly wrong once the planet crosses that 2 degree threshold.

In “Climate Shock,” you write that we need to insure ourselves against climate change. What do you mean by that?

Gernot Wagner: At the end of the day, climate is a risk management problem. It’s the small risk of a huge catastrophe that ultimately ought to drive the final analysis. Averages are bad enough. But those risks — the “tail risks” — are what puts the “shock” into “Climate Shock.”

Martin L. Weitzman: Coming back to your 2 degree question, it’s also important to note that the world has already warmed by around 0.85 degrees since before we started burning coal en masse. So that 2 degree threshold is getting closer and closer. Much too close for comfort.

What do you see happening in Paris right now? What steps are countries taking to combat climate change?

Gernot Wagner: There’s a lot happening — a lot of positive steps being taken. More than 150 countries, including most major emitters, have come to Paris with their plans of action. President Obama, for example, came with overall emissions reductions targets for the U.S. and more concretely, the Clean Power Plan, our nation’s first ever limit on greenhouse gases from the electricity sector. And earlier this year, Chinese President Xi Jinping announced a nation-wide cap on emissions from energy and key industrial sectors commencing in 2017.

It’s equally clear, of course, that we won’t be solving climate change in Paris. The climate negotiations are all about building the right foundation for countries to act and put the right policies in place like the Chinese cap-and-trade system.

How will reigning in greenhouse gases as much President Obama suggests affect our economy? After all, we’re so reliant on fossil fuels.

Gernot Wagner: That’s what makes this problem such a tough one. There are costs. They are real. In some sense, if there weren’t any, we wouldn’t be talking about climate change to begin with. The problem would solve itself. So yes, the Clean Power Plan overall isn’t a free lunch. But the benefits of acting vastly outweigh the costs. That’s what’s important to keep in mind here. There are trade-offs, as there always are in life. But when the benefits of action vastly outweigh the costs, the answer is simple: act. And that’s precisely what Obama is doing here.

Read the rest on the PBS Newshour blog.

Wagner coverGernot Wagner is lead senior economist at the Environmental Defense Fund. He is the author of But Will the Planet Notice? (Hill & Wang). Martin L. Weitzman is professor of economics at Harvard University. His books include Income, Wealth, and the Maximum Principle. For more, see www.gwagner.com and scholar.harvard.edu/weitzman.

 

Conversations on Climate: Victor W. Olgyay on Design and Ecology’s Interconnection

NEW climate pic

Connecting Buildings to Address Climate Change
by Victor W. Olgyay

“We are not all weak in the same spots, and so we supplement and complete one another, each one making up in himself for the lack in another.”
Thomas Merton, No Man is an Island

In Pope Francis’ recent visit to the US, he referred to several interesting touchstones in America’s spiritual history, including Thomas Merton. Merton was a prolific writer, and often emphasized the importance of community and our deep connectedness to others as a nurturing aspect of spiritual life. The importance of connectedness is not only true of spirituality, but also applies to ecology, an idea we continue to relearn. We cannot throw anything out, because our discard comes back to us in the water we drink, the food we eat, or in the air we breathe. Our society is intimately connected; we all depend on the same resources to survive.

As the world’s leaders debate political solutions to our current climate crisis, brought about largely by our neglect of this idea, we can look to some very practical solutions within our built environment to protect and enhance resilient communities. In buildings, these broader connections to community exist as well. Buildings have traditionally emerged from context, been built out of local materials, fit into the contours of the landscape, and made use of the local climate to help heat and cool the structures. Almost inevitably, these buildings show a climatic response, drawn from the genus of place, mixed with human inventiveness. Between people and place a dialogue is evoked, a call and response that started long ago, and continues to evolve today.

This conversation has a science to it as well. In the mid 20th century many architects dove deep into the rationality of design, rediscovering how buildings can be designed to optimize their relationship to people, climate and place. Bridging technology, climatology, biology and architecture, the science of bioclimatic design was given quantitative documentation in Design with Climate, the 1963 text recently republished by Princeton University Press. The interdisciplinary approach to design that book describes remains the fundamental approach to designing high performance buildings today.

Integrated building design connects across disciplines.

Integrated building design connects across disciplines.

But today’s high performance buildings are often functionally isolated from our neighbors, from our community. Rather than emphasize connectivity, we have built our utility network on the idea that our buildings are at the consuming end of a wire. We aspire to make our buildings independent, but objectively we remain largely interdependent. By recognizing our commonality, we can reimagine our activities, so our buildings use connectivity to provide services that benefit the larger community as well as the building owner or occupant.

High performance solar powered buildings can use the electric utility grid to achieve net zero energy use over the course of a year. When building PV systems generate more electricity then they need, they can push it back into the grid, and when they need electricity, they can pull it from the grid, in essence, using the electrical grid as if it were a large battery.

While this is quite reasonable from a building end user perspective, what happens if we are drawing energy when the electricity is in great demand and pushing electricity onto it when there is already an excess of electricity? Looking at the system from the grid perspective is a different point of view. High performance buildings can make utility electricity problems worse.

By intelligently connecting buildings we can respond appropriately to utility grid needs, and provide services. To some extent this has been happening for many years in the form of “demand response” where building owners opt to reduce their power consumption when the utility is stressed in meeting demand. In turn, building owners receive reduced electricity charges.

But this is only the beginning. When we aggregate neighborhoods of buildings, we can provide a wide variety and quantity of services to the grid. In addition to demand response, buildings can (thanks to on site solar electricity generation) supply low carbon electricity to the grid. Buildings can shift loads, to use electricity when there is an over supply. Buildings (using batteries or thermal systems) can store energy for use later. Portfolios of buildings can even provide voltage regulation in useful quantities.

These ancillary products of high performance buildings are of great value economically to both the building owner and to the utility providing electricity and electricity distribution services. They are worth money, and a building that has always carried a utility operating cost can now be designed to have an operating income. And perhaps even more importantly, buildings communicating with the grid can help the grid run more smoothly, and by decarbonizing the electricity reduce the pollution and greenhouse gas emissions associated with providing utility services to us all.

Connecting buildings to act as an asset to the utility grid turns our current “end user” paradigm on its head. Individual projects can multiply their positive impact by increasing connectedness. As more of us coordinate with electrical utility systems, we have a stronger base of resources, a more resilient electrical grid, and more sources of income.

The bioclimatic design approach described in Design with Climate now has a renewed urgency. As we design our new buildings and redesign our existing buildings to purposefully engage with their context and climate and community, we can readily reduce building energy use and emissions at marginal cost. Connecting with climate, and intelligently connecting with the utility grid empowers buildings to have a positive environmental impact. With the issue of climate change looming ever sharper, the design community must recognize their deep connection to the climate issue, and take responsibility for moving the design professions and society forward to a solution.

In our commonality we find a larger, critical context that is set by our interdependence. Indeed, as Merton noted, in community we complete one another, and recognize our common home.


DesignVictor W. Olgyay is an architect and the son of the author of Design with Climate.

New Earth Science Catalog

We invite you to scroll through our new Earth Science catalog:

 

Planet Oliver Morton explores the uses of geoengineering in addressing the problems posed by climate change in The Planet Remade. This is necessary reading for all those concerned with the health of our planet.
Rules In The Serengeti Rules, Sean B. Carroll describes how the rules of regulation apply to all of life, from the number of zebras in the African savanna to the amount of cells in our organs. Read it to understand how life works!
Life Be sure to check out Life’s Engines. Paul G. Falkowski explains how life is supported by microbes, organisms that have existed on Earth for billions of years.

For more information on these and many more new titles in Earth Science, look through our catalog above. If you would like updates on new titles emailed to you, subscribe to our newsletter.

Finally, if you’re going to be at the American Geophysical Union Fall Meeting from December 14 to December 18, visit PUP at booth #920 and/or join the conversation using #AGU15.

Conversations on Climate: Victor W. Olgyay on Design for Climate

NEW climate pic

Design with Climate is Design for Climate
by Victor W. Olgyay

climate change 2Our environmental crisis is real, and it is of our own creation. It is shocking that we humans are intentionally destroying the foundations of our existence, fouling our nest beyond repair. And we appear incapable of stopping ourselves from continuing to further worsen the problem.

Perhaps the issue is not irredeemable. After all, the climate crisis has had a long, slow burn. It has been a hundred years in the making, and has had the contribution of millions of individuals who have been polluting in the name of progress.

Now, in 2015 we are aware of what the uncoordinated actions of 7.3 billion people working for progress results in. We understand the origins of the ever-increasing carbon dioxide in the atmosphere. And we can both see the path forward, and we can design the path that we prefer.

Globally, buildings are the largest end use energy sector. We need to take dramatic steps today to address the global climate crisis, and that requires improving the energy performance of existing and new buildings. By doing this we will be able to shift economically to a renewable, low carbon energy supply.

We can reduce energy use in new and existing buildings dramatically and we can accomplish much of this through low and no cost measures. Simply designing buildings to work with local climatic conditions can reduce energy use by 50 percent or more. Design with Climate, a book written over 50 years ago, and recently republished by Princeton University Press, shows exactly how to do that. In essence, bioclimatic design information tells us how to shade our windows and walls during overheated periods, and to let in the sun’s warmth in when it is desirable. We can use daylight to illuminate vast amounts of interior space, and ventilate buildings with the wind, rather than fighting it. These ideas and many more result in sensible, responsible design, intelligent use of resources, and can result in beautiful, comfortable buildings.

: Designing with Climate makes buildings more comfortable while using less energy.

Designing with Climate makes buildings more comfortable while using less energy.

Since Design with Climate was written in 1963, several things have happened that make this even easier. We have more effective building insulation systems, which dramatically reduce heat loss and gain. We have better windows, and better techniques for building to reduce air and moisture infiltration. And we have sophisticated computer energy modeling techniques that accurately predict how buildings will preform before we build them, so building performance can become an integral part of building design.

And one more thing: we have that environmental crisis I started with. When Design with Climate was first published in 1963, the amount of carbon dioxide in the atmosphere was 320 parts per million (ppm), and today it is over 400ppm. In 1963 Rachael Carson had just written Silent Spring, and the environmental movement was nascent. Today the polar ice caps are melting, and global warming is threatening our very existence.

climate change 1We are now building extremely low energy buildings, zero energy buildings, and even buildings that produce more energy then they consume. Retrofitting existing buildings to use less energy, and building new superefficient structures paves the way for our renewable energy powered future, and combats climate change.

We must design not only with, but also for climate. Building design has implications we must use for our benefit. And through this engaged conversation with nature we can usher in a design solution to our climate crisis. That is true progress that can align millions of people.


Olgyay_DesignPB_F15_NewAndExpanded
Victor W. Olgyay is an architect and the son of the author of Design with Climate.

United Nations Conference on Climate Change: Reading Roundup #COP21

For the next two weeks, representatives from countries around the world will be meeting in Paris to discuss nothing less than the future of our planet at the United Nations Conference on Climate Change. Climate change is one of the most important issues facing the world today, and it behooves all of us to educate ourselves. PUP publishes a number of titles that have the information you need to understand the repercussions of climate change, and make informed choices that will promote sustainability. Browse many of them below, and be sure to take advantage of the free chapters and/or introductions that we have posted on our website. For the next two weeks, check back here to follow our Conversations on Climate blog series, including posts from Victor Olgyay and Gernot Wagner.

Morris Foragers, Farmers, and Fossil Fuels
Ian Morris
Chapter 1
Climate Climate Shock
Gernot Wagner & Martin L. Weitzman
Chapter 1
 Life Life on a Young Planet
Andrew H. Knoll
Chapter 1
 Medea The Medea Hypothesis
Peter Ward
Chapter 1
 Sun The Sun’s Influence On Climate
Joanna D. Haigh & Peter Cargill
Chapter 1
 Worst The Worst of Times
Paul B. Wignall
Chapter 1
 Extinction Extinction
Douglas H. Erwin
Chapter 1
Tambora Tambora
Gillen D’Arcy Wood
Introduction
 Design Design With Climate
Victor Olgyay
Chapter 1
 Planet The Planet Remade
Oliver Morton
Introduction
 Ocean The Great Ocean Conveyor
Wally Broecker
Chapter 1
 Rules The Serengeti Rules
Sean B. Carroll

Victor Olgyay: Architecture is the cause and solution to climate related problems

design with climatePrinceton University Press has just reprinted Design with Climate: Bioclimatic Approach to Architectural  Regionalism, by Victor Olgyay, more than 50 years after its initial printing in 1963. Design with Climate describes an integrated design approach that remains a cornerstone of high performance architecture.

Victor Olgyay (1910-1970) was associate professor in the School of Architecture and Urban Planning at Princeton University. He was a leading researcher on the relationship between architecture, climate, and energy. His son, Victor W. Olgyay, is an architect and principal at Rocky Mountain Institute and was instrumental in reissuing this book. For this updated edition, he commissioned four new essays that provide unique insights on issues of climate design, showing how Olgyay’s concepts work in contemporary practice. Ken Yeang, John Reynolds, Victor W. Olgyay, and Donlyn Lyndon explore bioclimatic design, eco design, and rational regionalism, while paying homage to Olgyay’s impressive groundwork and contributions to the field of architecture.

Victor W. Olgyay spoke to Molly Miller about Design with Climate then and now.

Did Design with Climate change design when it came out in 1963?

VO: It wasn’t really very popular in the United States when it came out, but it soon became genuinely popular in South America. Our whole family moved to Colombia, South America, so my father could teach bioclimatic design there. He did research with his students using local climate zones and generated very interesting regional designs and published different versions of Design with Climate in Colombia and Argentina. This was in 1967-70. There are still clandestine editions in Spanish and Portuguese floating around, as well as in my fathers’ archives at Arizona State University.

My father died on Earth Day, April 22, 1970. Soon afterwards the 1973 oil embargo began and energy became a serious topic. That’s when Design with Climate caught people’s attention in the US because here was a book showing architects how they could respond to critical contemporary issues. Design with Climate suddenly was adopted in dozens of schools of architecture in the US and became a popular textbook. The broad popularity of the book had to do with Earth Day and with the oil crisis, but in the architecture community it was seen as a keystone helping bridge the emerging environmental architecture movement and analytic regionalism. That’s when it began to affect how architects approach design.

What is bioclimatic design?

VO: My father coined the term “bioclimatic design.” Bioclimatic design uses nature’s energies to harmonize buildings with local conditions. The physics of the environment, such as solar radiation and the convection of wind are employed as formal influences to create a climate balanced design. A diagram in the book shows four interlocking circles: biology, climatology, technology, and architecture. The lines of the circles are soft multi-layered lines, emblematic of the riparian merging of these disciplines. Bioclimatic design takes these disciplines and considers them together. For me this is the approach of a polymath, where when you consider things from different worlds together, you learn something completely new. You have insights you wouldn’t have gotten if they were isolated.

Screen Shot 2015-10-22 at 2.53.49 PM
In this model, people are at the center of the diagram. Biology addresses people’s needs for thermal and visual comfort. Synthesizing these disciplines results in a superior architecture. My father believed architecture’s ultimate purpose is to provide a place for the human spirit to lift, and support the human endeavor.

On a more practical level, a large part of this book is devoted to a design process. What if climate informs the design? How can you optimize nature and apply it to buildings?

VO: What’s really different about this approach is that my father looked carefully at how these fields are inter-related and did the analysis. This process is shown in the book. He took fairly complicated data about climate and made it into manageable design steps. He advocated working with climate to reduce energy use by orientation, shading, natural ventilation etc. In one example, he used wind tunnels with smoke to visualize air currents. Seeing the air currents allows an architect to make adjustments in their design, perhaps slightly moving the edge of an overhang next to a building to optimize natural ventilation.

How is this book relevant today?

VO: Today, more than ever, we have identified architecture as the cause and solution to a large percentage of our climate related problems. It is impossible for us to transition to a low carbon economy without reducing the energy consumption of buildings. To do that, we need to take into account bioclimatic design and Design with Climate shows us how to get that into our lexicon again.

Integrated design has taken off. Today, we have a renaissance of people thinking about green design. Not only do we need to design with climate, we now have to design for a changing climate and address global issues with architecture.

But even though we can say green design is becoming mainstream, the concepts in Design with Climate are still widely overlooked. Let’s take shading as an example. Many ‘green’ architects are still cladding their entire building in glass, which is neither comfortable nor energy efficient and ignores climatic information.

Architects rarely recognize how a building affects people and the environment. It’s surprising to me that architects don’t use climatic information more. It’s a gift to be able to make a space that people find thermally and visually comfortable. That can make an inspired design! There are dire consequences to designing a glass box. It’s critical today for architects to have a modicum of morality in design. This is the awareness that Design with Climate brings. There’s no penalty for your design to work with climate, just benefits.

Has this new edition of Design with Climate been changed or updated?

VO: As an existing book, it seemed classic and I wanted to honor that. So we reprinted the entire original manuscript exactly as it first appeared. But we added some essays to provide contemporary context. Donlyn Lyndon worked with my father on the original research. John Reynolds, professor emeritus at University of Oregon, has been teaching bioclimatic design for 40 years. Ken Yeang, who has been working with ecological design with tall buildings, brings Design with Climate into the 21st Century. These essays each add color and context and show how Design with Climate was a steppingstone to our contemporary architecture.

What does this book mean to you personally and professionally?

VO: I have always been interested in the implications of architecture and form. Our work is important, and can have a positive impact in the world. My father’s book has reached hundreds of thousands of people and encouraged environmental architects. I am very thankful that this book has had that influence. It is an honor for me to assist with this new edition, so this book endures as an inspiration for others to honor the earth, and to support the evolution of the human spirit.