Browse Our Physics & Astrophysics 2017 Catalog

We invite you to explore our Physics & Astrophysics 2017 Catalog:

PUP will be at the 229th Meeting of the American Astronomical Society in Grapevine, Texas from January 3 to January 7. Come and visit us at booth #200! Also, follow #AAS229 and @PrincetonUnivPress on Twitter for updates and information on our new and forthcoming titles throughout the meeting.

Welcome to the Universe is a personal guided tour of the cosmos by three of today’s leading astrophysicists: Neil deGrasse Tyson, Michael A. Strauss, and J. Richard Gott. Breathtaking in scope and stunningly illustrated throughout, this book is for those who hunger for insights into our evolving universe that only world-class astrophysicists can provide.

Tyson et al Welcome to the Universe

In Fashion, Faith, and Fantasy in the New Physics of the Universe, acclaimed physicist and bestselling author Roger Penrose argues that fashion, faith, and fantasy, while sometimes productive and even essential in physics, may be leading today’s researchers astray in three of the field’s most important areas—string theory, quantum mechanics, and cosmology.

Penrose Fashion

An accessible blend of narrative history and science, Strange Glow describes mankind’s extraordinary, thorny relationship with radiation, including the hard-won lessons of how radiation helps and harms our health. Timothy Jorgensen explores how our knowledge of and experiences with radiation in the last century can lead us to smarter personal decisions about radiation exposures today.

Jorgensen Strange Glow

If you would like updates of our new titles, subscribe to our newsletter.

Exclusive interview with Neil deGrasse Tyson, Michael A. Strauss, and J. Richard Gott on their NYT bestseller, Welcome to the Universe

UniverseWe’re thrilled to announce that Welcome to the Universe, a guided tour of the cosmos by three of today’s leading astrophysicists, recently made the New York Times extended bestseller list in science. Inspired by the enormously popular introductory astronomy course that Neil deGrasse Tyson, Michael A. Strauss, and J. Richard Gott taught together at Princeton, this book covers it all—from planets, stars, and galaxies to black holes, wormholes, and time travel. The authors introduce some of the hot topics in astrophysics in today’s Q&A:


What is the Cosmic Perspective?

NDT: A view bigger than your own that offers a humbling, yet enlightening, and occasionally empowering outlook on our place as humans in time, space, on Earth and in the Universe. We devote many pages of Welcome to the Universe to establishing our place in the cosmos – not only declarations of that place, but also the reasons and the foundations for how we have come to learn how we fit in that place. When armed with a cosmic perspective, many earthly problems seem small, yet you cultivate a new sense of belonging to the universe. You are, in fact, a participant in the great unfolding of cosmic events.

What are some of the takeaways from the book?

NDT: If you read the entire book, and if we have succeeded as authors, then you should walk away with a deep sense of the operations of nature, and an appreciation for the size and scale of the universe; how and why planets form; how and why we search for planets orbiting around other stars, and alien life that may thrive upon them; how and why stars are born, live out their lives and die; what galaxies are and why they are the largest organizations of stars in the universe; the large scale structure of galaxies and space-time; the origins and future of the universe, Einstein’s relativity, black holes, and gravitational waves; and time travel. If that’s not enough, you will also learn about some of the continued unsolved mysteries in our field, such as dark matter, dark energy, and multiverses.

This book has more equations than do most popular books about astrophysics.  Was that a deliberate decision?

MAS: Yes.  The book’s subtitle is “An Astrophysical Tour,” and one of our goals in writing it was to show how observations, the laws of physics, and some high school mathematics can combine to yield the amazing discoveries of modern astrophysics: A Big Bang that happened 13.8 billion years ago (we show you how that number is determined), the dominant role dark matter has in the properties of galaxies (we tell you how we came to that conclusion), even the fact that some planets orbiting other stars have conditions conducive for liquid water to exist on their surface, thought to be a necessary prerequisite for life. Our goal is not just to present the wonders of the universe to the reader, but to have the reader understand how we have determined what we know, and where the remaining uncertainties (and there are plenty of them!) lie.

So your emphasis is on astrophysics as a quantitative science, a branch of physics?

MAS:  Yes.  We introduce the necessary physics concepts as we go: we do not expect the reader to know this physics before they read the book.  But astrophysicists are famous (perhaps notorious!) for rough calculations, “to astrophysical accuracy.”  We also lead the reader through some examples of such rough calculations, where we aim to get an answer to “an order of magnitude.”  That is, we’re delighted if we get an estimate that’s correct to within a factor of 2, or so.  Such calculations are useful in everyday life, helping us discriminate the nonsensical from the factual in the numerical world in which we live.

Can you give an example?

MAS: Most people in everyday discourse don’t think much about the distinction between “million,” “billion,” “trillion,” and so on, hearing them all as “a really big number,” with not much difference between them.  It is actually a real problem, and the difference between Federal budget items causing millions vs. billions of dollars is of course huge.  Our politicians and the media are confusing these all the time.  We hope that the readers of this book will come away with a renewed sense of how to think about numbers, big and small, and see whether the numbers they read about in the media make sense.

Is time travel possible?

JRG: In 1905 Einstein proved that time travel to the future is possible. Get on a rocket and travel out to the star Betelgeuse 500 light-years away and return at a speed of 99.995 % the speed of light and you will age only 10 years, but when you get back it will be the year 3016 on Earth. Even though we have not gone that fast or far, we still have time travelers among us today. Our greatest time traveler to date is the Russian cosmonaut Gennady Padalka, who by virtue of traveling at high speed in low Earth orbit for 879 days aged 1/44 of a second less than if he had stayed home. Thus, when he returned, he found Earth to be 1/44 of a second to the future of where he expected it to be. He has time traveled 1/44 of a second to the future. An astronaut traveling to the planet Mercury, living there for 30 years, and returning to Earth, would time travel into the future by 22 seconds. Einstein’s equations of general relativity, his theory of curved spacetime to explain gravity, have solutions that are sufficiently twisted to allow time travel to the past. Wormholes and moving cosmic strings are two examples. The time traveler can loop back to visit an event in his own past. Such a time machine cannot be used to journey back in time before it was created. Thus, if some supercivilization were to create one by twisting spacetime in the year 3000, they might use it to go from 3002 back to 3001, but they couldn’t use it go back to 2016, because that is before the time loop was created. To understand whether such time machines can be realized, we may need to understand how gravity works on microscopic scales, which will require us to develop a theory of quantum gravity. Places to look for naturally occurring time machines would be in the interiors of rotating black holes and at the very beginning of the universe, where spacetime is strongly curved.

Do we live in a multiverse?

JRG: A multiverse seems to be a natural consequence of the theory of inflation. Inflation explains beautifully the pattern of slightly hotter and colder spots we see in the Cosmic Microwave Background Radiation. It explains why the universe is so large and why it is as smooth as it is and still has enough variations in density to allow gravity to grow these into galaxies and clusters of galaxies by the present epoch. It also explains why the geometry of the universe at the present epoch is approximately Euclidean. Inflation is a period of hyperactive accelerated expansion occurring at the beginning of our universe. It is powered by a large vacuum energy density and negative pressure permeating empty space that is gravitationally repulsive. The universe doubles in size about every 3 10-38 seconds. With this rate of doubling, it very quickly grows to enormous size: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024… That explains why the universe is so large. When the high density vacuum state decays, it doesn’t do so all at once. Like water boiling in a pot, it does not turn into steam all at once, but should form bubbles. Each expanding bubble makes a universe. The inflationary sea should expand forever, creating an infinite number of bubble universes, ours being one of them. Other distant bubble universes are so far away, and the space between us and them is expanding so fast, that light from them may never reach us. Nevertheless, multiple universes seem a nearly inevitable consequence of inflation.

What discovery about the universe surprises or inspires you the most?

JRG: Perhaps the most amazing thing about the universe is that it is comprehensible to intelligent, carbon-based life forms like ourselves. We have been able to discover how old the universe is (13.8 billion years) and figure out many of the laws by which it operates. The object of this book is to make the universe comprehensible to our readers.

Don’t miss this C-Span video on the book, in which the authors answer questions about the universe, including how it began and the likelihood of intelligent life elsewhere.

Neil deGrasse Tyson is director of the Hayden Planetarium at the American Museum of Natural History. He is the author of many books, including Space Chronicles: Facing the Ultimate Frontier, and the host of the Emmy Award–winning documentary Cosmos: A Spacetime Odyssey. Michael A. Strauss is professor of astrophysics at Princeton University. J. Richard Gott is professor of astrophysics at Princeton University. His books include The Cosmic Web: Mysterious Architecture of the Universe (Princeton).

Neil DeGrasse Tyson & Stephen Colbert: Make America Smart Again

On November 9, Neil DeGrasse Tyson joined Stephen Colbert on The Late Show to talk about Welcome to the Universe and to blow his own mind. Watch the clip here:

 

Bird Fact Friday – To migrate long distances, birds follow the stars

From page 46 of Bird Brain:

There are a number of tools that birds use when migrating long distances. For example, one way that nocturnal birds find their way is by using the stars to navigate. Experiments with migratory birds in planetariums have found that birds learn celestial maps based on the position of certain major constellations, and their position relative to the poles. When exposed to a simulation of the northern hemisphere sky in the spring, birds will orient north, and vice versa.

Bird Brain
An Exploration of Avian Intelligence
Nathan Emery
With a foreword by Frans de Waal
Introduction

EmeryBirds have not been known for their high IQs, which is why a person of questionable intelligence is sometimes called a “birdbrain.” Yet in the past two decades, the study of avian intelligence has witnessed dramatic advances. From a time when birds were seen as simple instinct machines responding only to stimuli in their external worlds, we now know that some birds have complex internal worlds as well. This beautifully illustrated book provides an engaging exploration of the avian mind, revealing how science is exploding one of the most widespread myths about our feathered friends—and changing the way we think about intelligence in other animals as well.

Bird Brain looks at the structures and functions of the avian brain, and describes the extraordinary behaviors that different types of avian intelligence give rise to. It offers insights into crows, jays, magpies, and other corvids—the “masterminds” of the avian world—as well as parrots and some less-studied species from around the world. This lively and accessible book shows how birds have sophisticated brains with abilities previously thought to be uniquely human, such as mental time travel, self-recognition, empathy, problem solving, imagination, and insight.

Written by a leading expert and featuring a foreword by Frans de Waal, renowned for his work on animal intelligence, Bird Brain shines critical new light on the mental lives of birds.

The companion website to Welcome to the Universe launches today

Welcome to the UniverseWe’re thrilled to launch this beautiful companion website to the highly anticipated new book, Welcome to the Universe by Neil DeGrasse Tyson, Michael Strauss, and Richard Gott.

If you’ve ever wondered about the universe and our place in it, then this elegant mini-tour of the cosmos is for you. Divided into three parts called ‘Stars, Planets and Life,’ ‘Galaxies,’ and ‘Einstein and the Universe,’ the site is designed to take you on a journey through the major ideas in Welcome to the Universe. We hope you learn something new and exciting about outer space. If you find something interesting and would like to share, please do! The site is set up to make sharing interesting tidbits on social media easy. Want to learn more? The site also includes information on where to learn more about each topic. Keep an eye out for the book in October 2016.

 

Welcome to the Universe: An Astrophysical Tour by Neil deGrasse Tyson, Michael A. Strauss & J. Richard Gott from Princeton University Press on Vimeo.

Women in Science: Who are they at Princeton University Press?

Women have made great strides in STEM fields, but there are still far too few women in science—a situation that remains both complex and troubling. Here at Princeton University Press, we are proud to publish numerous important books in the sciences by women, on topics ranging from de-extinction, to primitive stars, to fireflies. If you’re interested in learning more about the lives and ideas of #WomenInScience, DiscovHer—a site dedicated to showcasing these remarkable people—has put together a great list of blogs for you to follow. And check out some of the most fascinating PUP authors and their books here:

Shapiro Jacket Beth Shapiro, an evolutionary biologist
and pioneer in “ancient DNA” research, shows how
de-extinction might change the future of
conservation in
How to Clone a Mammoth.
The Cosmic Cocktail What is the universe made of?
Acclaimed theoretical physicist Katherine Freese
shares the most cutting edge research aimed at
answering that question in
The Cosmic Cocktail.
Frebel Anna Frebel, who discovered several of the oldest
and most primitive stars, tells the story of the
research behind stellar archeology in
Searching for the Oldest Stars.
Lewis Have you ever been curious about the fireflies
that light up our summer nights? Noted
biologist and firefly expert Sara Lewis
answers all your questions and
more in Silent Sparks.
5-9 Fairbairn_Odd Daphne J. Fairbairn, a professor of biology,
shows that the differences between men and
women are negligible when compared with
differences between males and
females in the animal kingdom in
Odd Couples.
Hough

Delve into the fascinating world of
earthquake prediction in
Predicting the Unpredictable by
seismologist Susan Elizabeth Hough.

Gravitational waves making waves at Princeton

Today marks a new era in cosmology, astronomy, and astrophysics. The main page of the Einstein Papers Project website reports, “Gravitational waves do exist, as has been announced today with great joy by the scientists of the LIGO collaboration, after more than two decades of intensive experimental work.”

The cosmic breakthrough, which proves Einstein’s 100 year old prediction, has resulted in a tremendous response across the scientific community and social media. Scientific websites everywhere are already debating the meaning of the discovery, the #EinsteinWasRight hashtag has been bantered about on Twitter; You Tube featured a live announcement with over 80,000 people tuning in to watch (check it out at 27 minutes).

 

 

Princeton University Press authors Jeremiah Ostriker and Kip Thorne had a bet about gravitational wave detection in the 80s. Today when we contacted him, Ostriker, author of Heart of Darkness, was ebullient:

“The LIGO announcement today and the accompanying papers are totally persuasive. We all believed that Einstein had to be right in predicting gravitational waves, but to see them, so clean and so clear is marvelous. Two independent instruments saw the same signal from the same event, and it was just what had been predicted for the in-spiral and merger of two massive black holes.

A quarter of a century ago I had a bet with Kip Thorne that we would not see gravitational waves before the year 2000 – and I won that bet and a case of wine. But I did not doubt that, when the sensitivity of the instruments improved enough, gravitational waves would be found.  Now the skill and perseverance of the experimentalists and the support of NSF has paid off.

Hats off to all!!!”

But was Einstein always a believer in gravitational waves? Daniel Kennefick, co-author of The Einstein Encyclopedia says no:

“One hundred years ago in February 1916, Einstein mentioned gravitational waves for the first time in writing. Ironically it was to say that they did not exist. He said this in a letter to his colleague Karl Schwarzschild, who had just discovered the solution to Einstein’s equations which we now know describe black holes. Today brings a major confirmation of the existence both of gravitational waves and black holes. Yet Einstein was repeatedly skeptical about whether either of these ideas were really predictions of his theory. In the case of gravitational waves he soon changed his mind in 1916 and by 1918 had presented the first theory of these waves which still underpins our understanding of how the LIGO detectors work. But in 1936 he changed his mind again, submitting a paper to the Physical Review called “Do Gravitational Waves Exist?” in which he answered his own question in the negative. The editor of the journal responded by sending Einstein a critical referee’s report and Einstein angrily withdrew the paper and resubmitted it elsewhere. But by early the next year he had changed his mind again, completely revising the paper to present one of the first exact solutions for gravitational waves in his theory. So his relationship with gravitational waves was very far from the image of the cocksure, self-confident theorist which dominates so many stories about Einstein. Because of this, he would have been thrilled today, if he were still alive, to have this major confirmation of some of the most esoteric predictions of his theory.”

Here at Princeton University Press where we recently celebrated the 100th anniversary of Einstein’s theory of general relativity, the mood has been celebratory to say the least. If you’d like to read the Einstein Papers volumes that refer to his theory of gravitational waves, check out Document 32 in Volume 6, and Volume 7, which focuses on the theory. Or, kick off your own #EinsteinWasRight celebration by checking out some of our other relevant titles.

Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves
by Daniel Kennefick

j8387

Relativity: The Special and the General Theory, 100th Anniversary Edition
by Albert Einstein

relativity 100 years

The Meaning of Relativity: Including the Relativistic Theory of the Non-Symmetric Field
by Albert Einstein

j484

Einstein Gravity in a Nutshell
by A. Zee

Zee_EinsteinGravityNutshell

The Road to Relativity: The History and Meaning of Einstein’s “The Foundation of General Relativity” Featuring the Original Manuscript of Einstein’s Masterpiece
by Hanoch Gutfreund & Jürgen Renn.

The Road to Relativity

The Curious History of Relativity: How Einstein’s Theory of Gravity Was Lost and Found Again
by Jean Eisenstaedt

the curious history of relativity jacket

 An Einstein Encyclopedia
by Alice Calaprice, Daniel Kennfick, & Robert Sculmann

Calaprice_Einstein_Encyclopedia

Gravitation and Inertia
by Ignazio Ciufolini & John Archibald Wheeler

gravity and inertia jacket

Einstein’s Jury: The Race to Test Relativity
by Jeffrey Crelinsten

einstein's jury jacket

What Does a Black Hole Look Like?
by Charles D. Bailyn

black hole

Dynamics and Evolution of Galactic Nuclei
by David Merritt

dynamics and evolution of galactic nuclei

The Global Nonlinear Stability of the Minkowski Space (PMS-41)
by Demetrios Christodoulou & Sergiu Klainerman

the global nonlinear stability of the minkowski space

Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics
by Kip S. Thorne & Roger D. Blandford

modern classical physics

The Collected Papers of Albert Einstein, Volume 7: The Berling Years: Writings, 1918-1921
by Albert Einstein

albert einstein

Anna Frebel on the search for the oldest stars

Frebel jacketAstronomers study the oldest observable stars in the universe in much the same way that archaeologists study ancient artifacts on Earth. Stellar archaeologist Anna Frebel is credited with discovering several of the oldest and most primitive stars, and her book, Searching for the Oldest Stars is a gripping firsthand account of her work. Recently she took the time to answer some questions:

What is your main research topic and what is stellar archaeology?

AF: My work is broadly centered on finding the oldest stars in the universe and using them to explore how the first stars and the first galaxies formed soon after the Big Bang. This works because these ancient stars are about 13 billion years old and they are still shining. The universe itself, by comparison, is 13.8 billion years old. I find these ancient stars in the outskirts of the Milky Way galaxy, using a large telescope. I’m also researching how the chemical elements heavier than hydrogen and helium were first created in those early stars, which ultimately allowed Earth to form and to bring about life in the universe.

What is your biggest discovery?

AF: I have been fortunate enough to discover several “record holding stars”. In 2007, I found a 13.2 billion year-old star, which is incredibly old. This followed the 2005 discovery of the chemically most primitive star – a star of the second generation of stars to have formed in the universe. Since then, I have analyzed some incredible ancient stars in dwarf galaxies that orbit the Milky Way galaxy, and together with my team, we have recently beaten said 2005 record, which was enormously exciting.

Why do people say we are made from stardust?

AF: We humans are made from all sorts of different chemical elements, mostly carbon. We breathe oxygen and nitrogen, we wear silver and gold jewelry. All these elements were once, atom by atom, created inside different kinds of stars and their supernova explosions over the course of billions of years. Studying this evolution of the chemical elements in the universe with the help of ancient stars means that I’m literally studying the cosmic origins of the building blocks of life. So we really are closely connected with the universe, far more than we realize.

How did you decide to become a scientist?

AF: From a young age I knew I wanted to study stars. They were just so fascinating to me, these big spheres of gas, fusing new elements to gain energy to shine for eons in the sky. Fortunately, I received good advice during high school on how to become an astronomer. After studying physics until 2002, I turned to astronomy and the rest is history. Today, I take pride in sharing my story with young people and the general public by telling them what astronomers do on a daily basis, and how scientific results are achieved. I am passionate about conveying the importance of science literacy to the young and the young at heart while inspiring them with the beauty and mystery of the cosmos.

What kind of telescope is used for your astronomical observations?

AF: Astronomers use all kinds of different telescopes on Earth as well as from space to peer deep into the cosmos. It depends on the type of project and the brightness of the objects which telescope is best suited. Space observations are being carried out remotely, whereas ground-based observations are still done by the astronomer who has to travel to the telescope. More and more telescopes are becoming automated to enable remote controlled “office observing”.

Anna Frebel in front of the 6.5m Magellan Telescope in Chile.

Anna Frebel in front of the 6.5m Magellan Telescope in Chile.

Are you traveling to any telescopes?

AF: Yes, I regularly fly to Chile to the Magellan Telescopes to carry out my observations. These are some of the largest telescopes in the world and the dark night sky in the Southern Hemisphere is terrific for studying the cosmos. It’s the favorite part of my job and I love discovering new facts about the universe through these observations!

What does it mean when you say you’re going observing?

AF: To use the telescopes, you have to fly to Chile. First to Santiago, then to La Serena and from there is a 2-3h drive up the mountains of the Atacama Desert where the telescopes are. There are guest rooms there for the observers to sleep during the day and the observatory chefs are cooking delicious meals for everyone. Dinner is eaten together by all observers, including the technical staff. It’s a little community with the sole purposes of caring for the telescopes and obtaining exquisite astronomical observations all night long of a breathtaking sky.

What does a typical night at the telescope look like?

AF: All preparations for the night happen during the afternoon while it’s still light outside. After sunset, I usually choose the first targets from my list, which I begin to observe soon after dark. Each star is observed for 10-30 minutes. We immediately inspect each observation and then decide on the fly whether we need more data or not. If we have found an interesting old star we may choose to immediately observe it for a few more hours.

Did anything ever go wrong at the telescopes?

AF: Of course! Mostly when it’s cloudy because then we can’t observe any starlight. This can be very frustrating because it can mean that we have to come back to the telescope a year later to try again. Clouds spell bad luck. Other times, the air layers above the telescope are often not as smooth as is required. This makes the stars twinkle and appear less sharp, which means less good data and longer exposure times. And sometimes there are technical problems with the telescope too.

How do you get your telescope time? Can I go to your telescope and observe, too?

AF: To obtain telescope time, astronomers have to submit a proposal to a committee that selects the best projects and awards them the time. The proposal contains a detailed description of the project and the technical details on what information is being sought. Telescope use is restricted to professional astronomers because of the considerable expense. The cost is about USD 50,000 to 100,000 per night, depending on the telescope, and often paid by various institutions and universities who jointly operate observatories. While this is a lot of money, it’s actually not that much in comparison to many other research facilities.

Are there any special moments at the telescope that you remember in particular?

AF: Yes, going observing is always magical and memorable. Of course I particularly remember big discoveries and the excited nervousness of checking and checking whether we didn’t make a mistake and that the discovery was really what it appeared to be. Then, there have been the frustrating moments of sitting at the telescopes for nights on end listening to the rain and flying home empty-handed. I have been there when severe technical problems and even a bush fire prevented observing during clear nights. But I always associate observing with the most colorful sunsets, the calm and peaceful atmosphere up in the mountains, and of course the sleepless but exciting nights.

Anna Frebel is the Silverman (1968) Family Career Development Assistant Professor in the Department of Physics at the Massachusetts Institute of Technology. She is author of Searching for the Oldest Stars, and has received numerous international honors and awards for her discoveries and analyses of the oldest stars. She lives in Cambridge, Massachusetts.

Business Insider calls Katherine Freese one of the “50 scientists who are changing the world”

The Cosmic CocktailBusiness Insider included Katherine Freese, author of The Cosmic Cocktail, in a list of the 50 scientists who are changing the world. Freese was recognized for her pioneering work in the study of dark matter. Other picks included Andrea Accomazo, the first person to land a probe on a comet, Alan Stern, the principal investigator for NASA’s New Horizons mission,  Cori Bargmann, autism and Alzheimer’s researcher, as well as an impressive lineup of other scientists whose “revolutionary research in human happiness, evolutionary biology, neutrino physics, biotechnology, archeology, and other fields is helping to advance our lives in more ways than we could ever imagine.”

You can read the full feature here, and watch Freese discuss the greatest mysteries of the universe here.

Congratulations, Katherine!

Book Fact Friday – The Sun

From chapter 3 of The Sun’s Influence on Climate:

The Sun is about midway through its lifetime. At 5765 Kelvin, it is considered a cool star. 4,500,000,000 years ago, it formed from a dust cloud and is now burning its fuel, converting hydrogen into helium. Eventually, this burning will cease and it will end its life as a white dwarf.

The Sun’s Influence on Climate
Joanna D Haigh & Peter Cargill
Chapter 1

k10522The Earth’s climate system depends entirely on the Sun for its energy. Solar radiation warms the atmosphere and is fundamental to atmospheric composition, while the distribution of solar heating across the planet produces global wind patterns and contributes to the formation of clouds, storms, and rainfall. The Sun’s Influence on Climate provides an unparalleled introduction to this vitally important relationship.
This accessible primer covers the basic properties of the Earth’s climate system, the structure and behavior of the Sun, and the absorption of solar radiation in the atmosphere. It explains how solar activity varies and how these variations affect the Earth’s environment, from long-term paleoclimate effects to century timescales in the context of human-induced climate change, and from signals of the 11-year sunspot cycle to the impacts of solar emissions on space weather in our planet’s upper atmosphere.
Written by two of the leading authorities on the subject, The Sun’s Influence on Climate is an essential primer for students and nonspecialists alike.

 

25th anniversary of the launching of the Hubble Space Telescope

Twenty-five years ago today, the shuttle mission STS-31 saw the space shuttle Discovery launch the Hubble Space telescope successfully into orbit. Since then, it has produced the most stunning images of the cosmos humanity has ever seen. (The beautiful image below is of the grand-design spiral galaxy Messier 74!) The Hubble has transformed our understanding of the universe around us, revealing new information about its age and evolution, the life cycle of stars, and the very existence of black holes, among other startling discoveries.

The grand-design spiral galaxy Messier 74 as photographed by the Hubble Space Telescope.

The grand-design spiral galaxy Messier 74 as photographed by the Hubble Space Telescope.

However, behind the beautiful images taken by the telescope, there is the complex story of how the plans for the telescope came to fruition. But it took an amazing amount of work and perseverance to get the first space telescope up and running.

PUP author Robert Zimmerman’s The Universe in a Mirror tells the story of this telescope and the visionaries responsible for its extraordinary accomplishments. He takes readers behind the scenes of one of the most ambitious scientific instruments ever sent into space. After World War II, astronomer Lyman Spitzer and a handful of scientists waged a fifty-year struggle to build the first space telescope capable of seeing beyond Earth’s atmospheric veil. Zimmerman shows how many of the telescope’s advocates sacrificed careers and family to get it launched, and how others devoted their lives to Hubble only to have their hopes and reputations shattered when its mirror was found to be flawed. This is the story of an idea that would not die–and of the dauntless human spirit. Illustrated with striking color images, The Universe in a Mirror describes the heated battles between scientists and bureaucrats, the perseverance of astronauts to repair and maintain the telescope, and much more. Hubble, and the men and women behind it, opened a rare window onto the universe, dazzling humanity with sights never before seen.

Read Chapter 1 of The Universe in a Mirror here.

 

 

"Hubble 01" by NASA

“Hubble 01” by NASA

Katherine Freese, author of “The Cosmic Cocktail,” at the Royal Astronomical Society

Freese RAS talk

Katherine Freese speaking at the Royal Astronomical Society

Only 5 percent of all matter and energy in the cosmos (think plants, animals, planets, the air we breathe) is made up of ordinary atoms. The rest is known as dark matter—it cannot be seen with telescopes, and its precise identity remains unknown. The Cosmic Cocktail is the inside story of the epic quest to identify dark matter and learn what the universe is made of, told by one of today’s foremost pioneers in the study of dark matter, acclaimed theoretical physicist Katherine Freese. Neil deGrasse Tyson calls the book “a gripping first person account of her life as a cosmologist…Part memoir, part tutorial, part social commentary.” It’s the perfect detective story for science geeks.

Freese post-talk

Post-event drinks at the Royal Astronomical Society

This week, Katherine Freese is in the UK talking about her research and the book. On April 8, she gave a talk at the Royal Astronomical Society and then recorded The Forum on the BBC World Service, which was presented by science journalist Quentin Cooper and will be broadcast and available to listen to online later this month.

Freese and Quinton Cooper

Freese and Quentin Cooper

Don’t miss Freese’s upcoming speaking engagements: On April 15th, Freese and PUP author Jacqueline Mitton will be participating in Edinburgh International Science Festival and on April 16th Freese will be speaking at Blackwell’s in Oxford. Freese will be a guest on BBC Radio 4’s Woman’s Hour on April 17th. On May 26th, she will be speaking at Hay Festival, a philosophy and music festival in Hay-on-Wye, (one of the biggest literary festivals in the UK, which was described by Bill Clinton in 2001 as “The Woodstock of the mind”).

Freese recording The Forum at BBC

Freese recording at BBC Broadcasting House