Tanya Bub & Jeffrey Bub on Totally Random: A Serious Comic on Entanglement

BubTotally Random is a comic for the serious reader who wants to really understand the central mystery of quantum mechanics—entanglement: what it is, what it means, and what you can do with it. A fresh and subversive look at our quantum world with some seriously funny stuff, this book delivers a real understanding of entanglement that will completely change the way you think about the nature of physical reality.

Why a quantum comic?

TB: The idea came to us when we were working on an illustration for a somewhat tricky section of Jeff’s last book. What we wanted was for readers to have that “Aha!” moment of understanding when you experience something directly. Wouldn’t it be cool if instead of just telling you about how weird quantum mechanics is, we could somehow hand you an object that has all the weirdness of quantum entanglement baked into it, so that you get to play with it and see for yourself. We agreed that would be great, but how? That’s when we came up with idea of crafting a quantum object and making it “real” in the form of an experiential comic. The first strip was rough but we could sense that the feeling of understanding you got from it was really different and had a lot of potential. So we started to play around with the idea of doing a full-length quantum comic as a totally new way of giving people a direct understanding of what’s so puzzling and fascinating about quantum mechanics.

Sounds great but can a comic really get across such a difficult topic?

JB: When you think about it, the early guys like Bohr, Einstein, Heisenberg, and Schrödinger didn’t read about quantum mechanics, not initially anyway. They were looking at the results of experiments and trying to imagine a reality that could explain what they were seeing. The comic more or less puts you in their shoes. Yes, the object you get to play with is simpler than what they had to deal with, but mostly all we do is remove any distracting noise that’s not relevant to the mystery of entanglement, which Schrödinger recognized as “the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought.” So the reader gets to personally see how all the crazy stuff they came up with, like dead and alive cats, many worlds, apparent faster-than-light signaling, and so on, just sort of naturally falls out of the thing you are “holding” in your hands. We wanted people to experience that same feeling of having the rug pulled out from under their understanding of how the world works that Einstein, Bohr, and others had when they were first faced with quantum phenomena. There’s a very fundamental and disturbing challenge to your commonsense picture of reality when you see how something that seems so self-evident can turn out to be wrong.

What’s with the hands?

TB: Ah yes, the hands! So, the whole idea behind the book is to drag you into the puzzle of entanglement, right? We don’t know what you look like or who you are but we know that if you’re reading the book your hands are holding it. So we thought, what if we actually draw you, your hands, into the book and make you one of the main characters. Because in the end you’re the one who has to figure things out and you’re the one who has to grapple with the questions and ideas that continue to trouble physicists and philosophers to this day.

The other characters in the book, J and T, are obviously you, Jeff and Tanya, the two authors. Are the characters true to life and does their relationship reflect your father/daughter relationship?

JB: I don’t know what your relationship is with your parents or kids but imagine if you tried to write a book with one of them. You start to get a picture. There’s this relationship, this connection that is necessarily going to be a part of the process. It’s there, and what you want to do is use it to fuel the creative process, but you also can’t let it get out of control.

TB: To be honest, the writing of this book included shouting matches as well as huge laughs and in the end it was those things that made it so intense and so much fun. Anyway, because the book asks you, the reader, to be present, we felt it was only fair to  really be in there ourselves in some genuine way that reflected our own process in wrestling with these questions. So yes, while J and T are caricatures, they are in some sense real, and they capture the essence of our relationship and the experience of writing the book.

You also have historical characters like Einstein, Bohr, and Schrödinger in the book. How do they fit in?

TB: OK, so you’ve been playing with your designer quantum object, which as you know is a pair of entangled coins, and you are convinced that something is terribly strange about them and you now have all these questions buzzing though your head. That’s when “Einstein” comes along. He’s the first physicist you encounter. He takes a look at your coins and in his own words tells you what he thinks of them. Exactly why he finds them so very interesting and troubling. And by “in his own words” what I mean is direct quotes taken from some of his most well-known papers, but tweaked so that his words apply precisely to your coins, the entangled coins with which you are now intimately familiar. So in the course of the book you get to understand the subtle thinking of some of the greatest minds in physics, Einstein, Bohr, Schrödinger, Everett, von Neumann, about quantum mechanics, in their own words, but applied to something that you grasp in both the literal and figurative sense.

Einstein is represented as a delivery truck driver, Bohr is a Freudian therapist, von Neumann is a private eye. What was the thinking behind that?

TB: We really wanted to avoid the trap of having talking-head characters with long monologues. We felt that in order for the book to work we needed to take advantage of what comics are good at. Comics can put you in a place, give you an experience, have action, be funny, be outrageous. We really wanted our book to play on the strengths of the medium. So we gave each character a personality and job that somehow reflected the essence of their approach to quantum theory. Einstein as the blue-collar delivery truck driver brings the message of commonsense reasoning to the debate. Von Neumann as the private eye believes that a witness is required to close the case. Bohr uses psychotherapy to help you let go of your preconceived ideas about reality.

Does the book relate to modern-day thinking and technologies?

JB: Yes! You’ve probably seen stuff in the news about quantum technologies. We took the top three hot topics, quantum cryptography, quantum computing, and quantum teleportation and presented them in terms of three challenges that you have to solve using your wits and your entangled coins. By the end of this section you’ll have a personal understanding of how quantum entanglement can be used to do stuff that is otherwise impossible, since you will have just done it yourself. It’s quite funny too.

Who is this book for? Can someone with no background in quantum mechanics understand it, or is it for people who already know something about the subject?

TB: So, there’s no math at all in the book and in that sense anyone can pick it up. No previous knowledge required. So, really, there are no prerequisites other than being curious and open-minded. But the book will challenge some of your very fundamental ideas about how the world works. In other words, it really makes you think. If you are looking to shake up your conception of reality and you are willing to actively participate in the puzzles of quantum entanglement then you are exactly the kind of reader this book is written for. You could be someone who has never thought about quantum mechanics at all, or you could be someone who has an understanding of the math and formal arguments but don’t feel that you have fully grasped their conceptual significance. It’s also for people intrigued by the subject who may have read popular science books or seen documentaries on quantum mechanics but still feel like outsiders and don’t want to take someone else’s word for it anymore. I guess in the end it’s for people who want to really “get” the significance of entanglement for themselves.

Tanya Bub is founder of 48th Ave Productions, a web development company. She lives in Victoria, British Columbia. Jeffrey Bub is Distinguished University Professor in the Department of Philosophy and the Institute for Physical Science and Technology at the University of Maryland, where he is also a fellow of the Joint Center for Quantum Information and Computer Science. He lives in Washington, DC.

Eli Maor on Music by the Numbers

MaorThat music and mathematics are somehow related has been known for centuries. Pythagoras, around the 5th century BCE, may have been the first to discover a quantitative relation between the two: experimenting with taut strings, he found out that shortening the effective length of a string to one half its original length raises the pitch of its sound by an agreeable interval—an octave. Other ratios of string lengths produced smaller intervals: 2:3 corresponds to a fifth (so called because it is the fifth note up the scale from the base note), 3:4 corresponded to a fourth, and so on. Moreover, Pythagoras found out that multiplying two ratios corresponds to adding their intervals: (2:3) x (3:4) = 1:2, so a fifth plus a fourth equals an octave. In doing so, Pythagoras discovered the first logarithmic law in history.

The relations between musical intervals and numerical ratios have fascinated scientists ever since. Johannes Kepler, considered the father of modern astronomy, spent half his lifetime trying to explain the motion of the known planets by relating them to musical intervals. Half a century later, Isaac Newton formulated his universal law of gravitation, thereby providing a rational, mathematical explanation for the planetary orbits. But he too was obsessed with musical ratios: he devised a “palindromic” musical scale and compared its intervals to the rainbow colors of the spectrum. Still later, four of Europe’s top mathematicians would argue passionately over the exact shape of a vibrating string. In doing so, they contributed significantly to the development of post-calculus mathematics, while at the same time giving us a fascinating glimpse into their personal relations and fierce rivalries. As Eli Maor points out in Music by the Numbers, the “Great String Debate” of the eighteenth century has some striking similarities to the equally fierce debate over the nature of quantum mechanics in the 1920s.

What brought you to write a book on such an unusual subject? 

The ties between music and mathematics have fascinated me from a young age. My grandfather played his violin for me when I was five years old, and I still remember it quite clearly. He also spent many hours explaining to me various topics from his physics book, from which he himself had studied many years earlier. In the chapter on sound there was a musical staff showing the note A with a number under it: 440, the frequency of that note. It may have been this image that first triggered my fascination with the subject. I still have that physics book and I treasure it immensely. My grandfather must have studied it thoroughly, as his penciled annotations appear on almost every page.

Did you study the subject formally?

Yes. I did my master’s and later my doctoral thesis in acoustics at the Technion – Israel Institute of Technology. There was just one professor who was sufficiently knowledgeable in the subject, and he agreed to be my advisor. But first we had to find a department willing to take me under its wing, and that turned out to be tricky. To me acoustics was a branch of physics, but the physics department saw it as just an engineering subject. So I applied to the newly-founded Department of Mechanics, and they accepted me. The coursework included a heavy load of technical subjects—strength of materials, elasticity, rheology, and the theory of vibrations—all of which I did as independent studies. In the process I learned a lot of advanced mathematics, especially Fourier series and integrals. It served me well in my later work.

What about your music education?

I started my musical education playing Baroque music on the recorder, and later I took up the clarinet. This instrument has the unusual feature that when you open the thumb hole on the back side of the bore, the pitch goes up not by an octave, as with most woodwind instruments, but by a twelfth—an octave and a fifth. This led me to dwell into the acoustics of wind instruments. I was—and still am—intrigued by the fact that a column of air can vibrate and produce an agreeable sound just like a violin string. But you have to rely entirely on your ear to feel those vibrations; they are totally invisible to the eye.

When I was a physics undergraduate at the Hebrew University of Jerusalem, a group of students and professors decided to start an amateur orchestra, and I joined. At one of our performances we played Mozart’s overture to The Magic Flute. There is one bar in that overture where the clarinet plays solo, and it befell upon me to play it. I practiced for that single bar again and again, playing it perhaps a hundred times simultaneously with a vinyl record playing on a gramophone. Finally the evening arrived and I played my piece—all three seconds of it. At intermission I asked a friend of mine in the audience, a concert pianist, how did it go. “Well,” she said, “you played it too fast.”  Oh Lord!  I was only glad that Mozart wasn’t present!

Throughout your book there runs a common thread—the parallels between musical and mathematical frames of reference. Can you elaborate on this comparison? 

For about 300 years—roughly from 1600 to 1900—classical music was based on the principle of tonality: a composition was always tied to a given home key, and while deviating from it during the course of the work, the music was invariably related to that key. The home key thus served as a musical frame of reference in which the work was set, similar to a universal frame of reference to which the laws of classical physics were supposed to be bound.

But in the early 1900s, Arnold Schoenberg set out to revolutionize music composition by proposing his tone row, or series, consisting of all twelve semitones of the octave, each appearing exactly once before the series is completed. No more was each note defined by its relation to the tonic, or base note; in Schoenberg’s system a complete democracy reigned, each note being related only to the note preceding it in the series. This new system bears a striking resemblance to Albert Einstein’s general theory of relativity, in which no single frame of reference has a preferred status over others. Music by the Numbers expands on this fascinating similarity, as well as on the remarkable parallels between the lives of Schoenberg and Einstein.

You also touch on some controversial subjects. Can you say a few words about them?

It is generally believed that over the ages, mathematics has had a significant influence on music. Attempts to quantify music and subject it to mathematical rules began with Pythagoras himself, who invented a musical scale based entirely on his three “perfect intervals”—the octave, the fifth, and the fourth. From a mathematical standpoint it was a brilliant idea, but it was out of sync with the laws of physics; in particular, it ignored other important intervals such as the major and minor thirds. Closer to our time, Schoenberg’s serial music was another attempt to generate music by the numbers. It aroused much controversy, and after half a century during which his method was the compositional system to follow, enthusiasm for atonal music has waned.

But it is much less known that the attraction between the two disciplines worked both ways. I have already mentioned the Great String Debate of the eighteenth century—a prime example of how a problem originating in music has ended up advancing a new branch of mathematics: post-calculus analysis. It is also interesting to note that quite a few mathematical terms have their origin in music, such as harmonic series, harmonic mean, and harmonic functions, to name but a few.

Perhaps the most successful collaboration between the two disciplines was the invention of the equal-tempered scale—the division of the octave into twelve equally-spaced semitones. Although of ancient origins, this new tuning method has become widely known through Johann Sebastian Bach’s The Well-Tempered Clavier— his two sets of keyboard preludes and fugues covering all 24 major and minor scales. Controversial at the time, it has become the standard tuning system of Western music.

In your book there are five sidebars, one of which with the heading “Music for the Record Books: The Lowest, the Longest, the Oldest, and the Weirdest.”  Can you elaborate on them?

Yes. The longest piece of music ever performed—or more precisely, is still being performed—is a work for the organ at the St. Burkhardt Church in the German town of Halberstadt. The work was begun in 2003 and is an ongoing project, planned to be unfolding for the next 639 years. There are eight movements, each lasting about 71 years. The work is a version of John Cages’ composition As Slow as Possible. As reported by The New York Times, “The organ’s bellows began their whoosh on September 5, 2001, on what would have been Cage’s 89th birthday. But nothing was heard because the score begins with a rest—of 20 months. It was only on February 5, 2003, that the first chord, two G-sharps and a B in between, was struck.” It will be interesting to read the reviews when the work finally comes to an end in the year 2640.

I’ll mention one more piece for the record books: in 2012, astronomers discovered the lowest known musical note in the universe. Why astronomers?  Because the source of this note is the galaxy cluster Abell 426, some 250 million light years away. The cluster is surrounded by hot gas at a temperature of about 25,000,000 degrees Celsius, and it shows concentric ripples spreading outward—acoustic pressure waves. From the speed of sound at that temperature—about 1,155 km/sec—and the observed spacing between the ripples—some 36,000 light years—it is easy to find the frequency of the sound, and thus its pitch: a B-flat nearly 57 octaves below middle C. Says the magazine Sky & Telescope, “You’d need to add 635 keys to the left end of your piano keyboard to produce that note!  Even a contrabassoon won’t go that low.”

Eli Maor has taught the history of mathematics at Loyola University Chicago until his recent retirement. He is the author of six previous books by Princeton University Press: To Infinity and Beyonde: the Story of a NumberTrigonometric DelightsThe Pythagorean TheoremVenus in Transit; and Beautiful Geometry (with Eugen Jost). He is also an active amateur astronomer, has participated in over twenty eclipse and transit expeditions, and is a contributing author to Sky & Telescope.

A Big Deal: Organic Molecules Found on Mars

by David Weintraub

MarsIn 1976, both Viking 1 and Viking 2 touched down on the surface of Mars. Both landed on vast, flat plains, chosen because they were ideal locations for landing safely. Perhaps the most important Viking experiment for assessing whether life could exist on Mars was the gas chromatograph and mass spectrometer (GCMS) instrument, built by a team led by Klaus Biermann of MIT. Ultimately, Biermann and his GCMS team reported a definitive answer: “No organic compounds were found at either of the two landing sites.” None, nada, zilch.

This scientific discovery had enormous importance for our understanding Mars. Summing up what we learned from the Viking missions in 1992, and in particular what we learned from the absence of any organics in the sampled Martian soil, a team of Viking scientists wrote, “The Viking findings established that there is no life at the two landing sites.” Furthermore, because these two sites were thought to be extremely representative of all of Mars, they concluded that this result “virtually guarantees that the Martian surface is lifeless everywhere.” 

If Mars is sterile, then SpaceX and NASA and Blue Origin and Mars One can all move forward with their efforts to land colonists on Mars in the near future. They needn’t wrestle with any ethical issues about contaminating Mars.

Fast forward a generation. In a paper published in Science last week, Jennifer Eigenbrode and her team, working with data collected by the Mars Science Laboratory (i.e., the Curiosity rover), report that they discovered organic molecules in Martian soil. The importance of this discovery for the possible existence of life on Mars is hard to overstate. The discovery of organics on Mars is a BIG deal.

Let’s be careful in discussing organic molecules. An organic molecule must contain at least one carbon atom and that carbon atom must be chemically bonded to a hydrogen atom. All life on Earth is built on a backbone (literally) of organic molecules (DNA). And life on Earth can produce organic molecules (for example, the methane that is produced in the stomachs of cows). But abiological processes can also make organic molecules. In fact, the universe is full of such molecules known as PAHs (polycyclic aromatic hydrocarbons), which are found in interstellar clouds and the atmospheres of red giant stars and which have absolutely nothing to do with life.

Repeat: the presence of organic molecules on Mars does not mean life has been found on Mars. The absence of organic molecules in the Martian soil, as discovered in the Viking experiments, however, almost certainly means “no life here.” 

Were the Viking scientists wrong? Yes, in part. Their conclusion that the plains of Mars are representative of every locale on Mars was an overreach. When assessing whether the environment on Mars might be hospitable to life, local matters. That conclusion shouldn’t surprise anyone. After all, we find significant differences on Earth between the amount and kinds of life in the Mojave Desert and the Amazon River basin. Why? Water.

The vast, flat plains of Mars are free of organics, but they are unlike Gale Crater. Gale Crater was once a lake, full of water and dissolved minerals. We know now that certain locations on Mars that were warm and wet for extended periods of time in the ancient past have preserved a record of the organic molecules that formed in those environments.

Could life have played a role in creating these molecules?  Maybe, but we don’t know, yet. We do know, however, where to keep looking. We do know where to send the next several generations of robots. We do know that we should build robotic explorers that can drill deep into the soil and explore caves in places similar to Gale Crater.

Abigail Allwood, working at NASA’s Jet Propulsion Laboratory, is building a detector called PIXL that will be sent to Mars on a rover mission that is scheduled for launch in 2020. PIXL will be able to make smart decisions, based on the chemistry of a rock, as to whether that rock sample might contain ancient, fossilized microbes. A later mission might retrieve Allwood’s PIXL specimens and bring them back to Earth for more sophisticated laboratory studies. With instruments like PIXL, we have a good chance of definitively answering the question, “Does Mars or did Mars ever have life?”

What does the presence of organic molecules in the Martian regolith mean, as discovered by Curiosity? Those molecules could mean that life is or once was present on Mars. Finding those molecules just raised the stakes in the search for life on Mars. The jury is still out, but the betting odds just changed.

Given all we currently know about Mars, should we be sending astronauts to Mars in the next decade? Do we have the right to contaminate Mars if is already home to native Martian microbes? These are important questions that are more relevant than ever. 

David A. Weintraub is professor of astronomy at Vanderbilt University. He is the author of Life on Mars: What to Know Before We GoReligions and Extraterrestrial Life: How Will We Deal with It?How Old Is the Universe?, and Is Pluto a Planet?: A Historical Journey through the Solar System. He lives in Nashville.

Browse our 2018 History of Science & History of Knowledge Catalog

We are pleased to announce our new History of Science & History of Knowledge catalog for 2018! Among the exciting new titles are an annotated edition of Albert Einstein’s travel diaries, a new look at the history of heredity, eugenics, and the asylum, and the latest volume of The Collected Papers of Albert Einstein.

 

The Travel Diaries of Albert Einstein makes available the complete journal that Einstein kept on his momentous 1922 journey to the Far East and Middle East.

The telegraphic-style diary entries—quirky, succinct, and at times irreverent—record Einstein’s musings on science, philosophy, art, and politics, as well as his immediate impressions and broader thoughts on particular events and encounters. Entries also contain passages that reveal Einstein’s stereotyping of members of various nations and raise questions about his attitudes on race. This beautiful edition features stunning facsimiles of the diary’s pages, accompanied by an English translation, an extensive historical introduction, numerous illustrations, and annotations.

This volume offers an initial, intimate glimpse into a brilliant mind encountering the great, wide world.

In the early 1800s, a century before there was any concept of the gene, physicians in insane asylums began to record causes of madness in their admission books. Almost from the beginning, they pointed to heredity as the most important of these causes. Genetics in the Madhouse is the untold story of how the collection and sorting of hereditary data in mental hospitals, schools for “feebleminded” children, and prisons gave rise to a new science of human heredity.

In this compelling book, Theodore Porter draws on untapped archival evidence from across Europe and North America to bring to light the hidden history behind modern genetics. Porter argues that asylum doctors developed many of the ideologies and methods of what would come to be known as eugenics, and deepens our appreciation of the moral issues at stake in data work conducted on the border of subjectivity and science.

A bold rethinking of the asylum, Genetics in the Madhouse shows how heredity was a human science as well as a medical and biological one.

Volume 15 of The Collected Papers of Albert Einstein covers one of the most thrilling two-year periods in twentieth-century physics. The almost one hundred writings by Einstein, of which a third have never been published, and the more than thirteen hundred letters show Einstein’s immense productivity and hectic pace of life.

Between June 1925 and May 1927, Einstein quickly grasps the conceptual peculiarities involved in the new quantum mechanics and investigates the problem of motion in general relativity, hoping for a hint at a new avenue to unified field theory. He also falls victim to scientific fraud and experiences rekindled love for an old sweetheart. He participates in the League of Nations’ International Committee on Intellectual Cooperation and remains intensely committed to the shaping of the Hebrew University in Jerusalem, although his enthusiasm for this cause is sorely tested.

THE COLLECTED PAPERS OF ALBERT EINSTEIN is one of the most ambitious publishing ventures ever undertaken in the documentation of the history of science.  Selected from among more than 40,000 documents contained in the personal collection of Albert Einstein (1879-1955), and 20,000 Einstein and Einstein-related documents discovered by the editors since the beginning of the Einstein Papers Project, The Collected Papers provides the first complete picture of a massive written legacy that ranges from Einstein’s first work on the special and general theories of relativity and the origins of quantum theory, to expressions of his profound concern with international cooperation and reconciliation, civil liberties, education, Zionism, pacifism, and disarmament. The open access digital edition of the first 14 volumes of the Collected Papers is available online at einsteinpapers.press.princeton.edu.

Theodore Porter on Genetics in the Madhouse

PorterIn the early 1800s, a century before there was any concept of the gene, physicians in insane asylums began to record causes of madness in their admission books. Almost from the beginning, they pointed to heredity as the most important of these causes. As doctors and state officials steadily lost faith in the capacity of asylum care to stem the terrible increase of insanity, they began emphasizing the need to curb the reproduction of the insane. They became obsessed with identifying weak or tainted families and anticipating the outcomes of their marriages. Genetics in the Madhouse is the untold story of how the collection and sorting of hereditary data in mental hospitals, schools for “feebleminded” children, and prisons gave rise to a new science of human heredity. A bold rethinking of asylum work, Genetics in the Madhouse shows how heredity was a human science as well as a medical and biological one.

I can’t help noticing that the title of this book, Genetics in the Madhouse, incorporates a double anachronism.

Well, yes, you’re right about that. Guilty as charged. The book begins in about 1789 which, besides being the year of the French Revolution, coincides pretty closely with a new model of care for the insane. These new institutions were not places of incarceration, but retreats or—the favorite word of the new era—asylums. They were idealized as orderly, restful places in the countryside where patients, laboring quietly, could recover their mental balance. In real life, it was scarcely possible to maintain order and quiet in these hospitals, especially as they grew to hold thousands of patients. The title word “madhouse” evokes the precarious situation of service personnel trying to apply psychological and moral principles to such recalcitrant populations. The most basic point of the book is that routines of record keeping in these disorderly establishments provided an indispensable basis of data for investigation patterns of biological inheritance. Although our word for this study, “genetics,” was first used by the naturalist William Bateson in 1905, biological heredity as a scientific problem had been taking shape for at least a century. Bateson chose to let this new science be defined by Gregor Mendel’s experiments on plant hybridization from the 1860s, which had changed everything, he said. I follow a recent turn of historical research that demonstrates a richer and more diverse tradition of hereditary study. My book emphasizes the key role of data gathering from mental hospitals and related institutions for this science of human heredity.

This is your fourth book with Princeton University Press, all of which have involved history of statistics, calculation, and measurement in the human sciences. Did you write this one to reveal the statistical background to genetics?

In fact, the statistics of heredity was already an important topic of my first book, written in the late 1970s and early 1980s in the context of a very different historiography. Genetics in the Madhouse had its moment of inspiration a decade ago when it occurred to shift my emphasis from ideals of statistical reasoning to the production and deployment of medical and scientific data. Although I at first had no idea of this, data was just emerging as a focus of historical research. The history of data has and obvious connection to history of statistics, but it has, I would suggest, a certain primordial aspect. Statistics presupposes data, whereas there are other strategies besides statistics for reasoning with data. I ended up spending a lot of time in archives trying to figure out the protocol when, as it usually happened, a relative of a prospective patient supplied the medical superintendent of an asylum with information for a line in the hospital admission book. From this point of origin, I could see how unit entries were combined into medical-administrative tables, merged into census statistics, and recombined to get at the relations of different variables. I had supposed until recently that most doctors didn’t care much for statistics, but now I found that many asylum doctors at least took their numbers very seriously. I quickly discovered that what I had thought of as sources of data for statistical analysis were much more than this. The doctors were already deeply engaged in investigating relationship of heredity among the diagnosed insane decades before statisticians like Karl Pearson began asking them for data on heredity.

On this basis, I began the backward phase of my research, trying to establish when and where these tables of inheritance of first arose. One possible source, a very precise one, is the medical inquiries carried out about 1789 by Dr. William Black in response to a furor over the madness of King George III. A better answer would be to link it to the asylum movement and to new standards of record keeping for public institutions.

But do you really think that administrative records could provide the basis for a natural science such as genetics?

Indeed that would be too simple. Quite a lot of the asylum record keeping really was passive and formulaic, but this was never the whole story. Black, who was responding to constitutional crisis, had to track down privately-held data from Bethlem (Bedlam) and assemble new tables giving evidence on the critical question of whether the king was likely to recover. By the 1830s, many asylum doctors understood their role not only in terms of relieving insane persons committed to their institutions, but also of advising the population at large on the preservation of mental health. Their interest in causes of insanity was allied to this public-health mission. Meanwhile, despite all the new asylums, insanity numbers were growing like crazy. It became more and more important to understand causes, especially hereditary ones. By the 1840s, a subset of asylum doctors were taking the study of heredity very seriously. While they depended on administrative records to keep tabs on the presumed causes, they also widened the field of data collection, for example to relative of patients. Insanity, and even its inheritance, became a topic for the national census. The doctors also worked to integrate data from diverse institutions and to track down every insane person in specific parishes in order to unravel the family relationships and reduce them to family trees or pedigrees. So the routine record keeping often went well beyond administrative routines.

Why did they become obsessed with hereditary causation?

In fact, the inheritance of traits and diseases, including of mental illness, was already by 1800 a folk category. If a newly-admitted asylum patient had a sister or uncle who behaved oddly, spoke incoherently, or committed suicide, spouses and children often mentioned this as indicating a hereditary factor. Asylum doctors were in a position to gather up reports like these, and their tables often showed heredity as the most important cause of insanity. To be sure, such numbers depended also on the attitude of the doctor. Still, the numbers provided a basis for stern warnings against marrying into families plagued by hereditary weakness, and these were quite common by the 1840s. The reality of eugenics as a professional medical concern long predated the word.

Didn’t Charles Darwin’s cousin Francis Galton launch the eugenics movement?

Certainly he was a key figure, and ever since 1900, when eugenics became famous, his name has been associated it. But it is unconvincing, and probably even a category mistake, to attribute a professional and popular movement like eugenics to the inspiration of any single individual. As it happens, Galton’s initial obsession with human heredity, and even his early methods for investigating it, owed something to the ideas and practices of asylum doctors. In the 1870s, when he carried out his study of the resemblances of twins, he knew enough to ask asylum directors and the families of patients for pertinent data. And Darwin, an early convert to Galton’s doctrines of inherited ability and weakness, had been worrying for decades about the possibility of hereditary weakness in his own family. He and his son George proposed studies using data from asylums and related institutions to determine if family marriages might bring on inherited weakness.

How long did it take for modern genetics to replace medical and social speculations about inherited weakness once Mendel’s laws at last were noticed in 1900?

The first scientists to take up Mendelian research were botanists. It was quickly incorporated into agricultural research, and there were some real successes by the 1910s, most famously in research on mutations in fruit flies. Quick generation times and the possibility of rigorous experimental control were very important for Mendelian research. Some, such as Bateson, simply assumed that criminality must be controlled by a single gene. The first research on inheritance of insanity and mental weakness was carried out by allies of by Charles B. Davenport, founder of the well-funded Eugenics Record Office at Cold Spring Harbor in New York. He more or less assumed that conditions like these, with no evident bacteriological or environmental causes, must be hereditary, and in a straightforwardly Mendelian way. His data and much of the expertise to deploy it came from professionals at asylums and special schools, and thus was continuous with long-standing traditions of institutional research on heredity. The primary novelty was their strong expectation that Mendel’s characteristic ratios, 3:1 and 1:1, should spring out from breeding results. And that is what they found 

There followed an international wave of Mendelian psychiatry and psychology in Britain, Germany, Switzerland, and Scandinavia as well as North America. At first almost everyone succeeded in getting the results they were looking for, but these were harshly criticized, especially by Pearson and his allies in London. The most serious and expensive Mendelian studies were carried out in Germany, most famously by the Munich psychiatrist Ernst Rüdin in alliance with the doctor and statistician Wilhelm Weinberg. Their results for inheritance of mental illness (dementia praecox) were about six times smaller than they expected. Although they did not give up on Mendelism, they adopted for practical purposes a more empirical approach, measuring how the presence of a trait of interest in the parents affected the characters of the offspring, and ignoring for the time being the presumed genetic factors.

By about 1930, Davenport’s findings on Mendelian inheritance of mental defects had become a scandal. While geneticist continue often to speak loosely of genes for traits like these, and find it impossible to ignore them, there is no prospect of a simple Mendelian explanation of schizophrenia or learning disabilities. Meanwhile, statistical investigations of inheritance of mental and psychological traits go on.

Weren’t eugenic researches on inheritance of mental illness and disabilities discredited by the terrible abuses of the Nazis?

While few these days are willing to own up to eugenic ambitions, eugenics never died. One of the first really terrible crimes of the Nazis was to murder hundreds of thousands of asylum patients. Genetics had some role in the justification and implementation of this policy, though rarely if ever let scientific arguments determine the implementation of policies like these. German research on psychiatric heredity from the Nazi period did not just disappear, but was cited and used for decades by researchers in Britain, Scandinavia, and North America, some of whom despised the medical-eugenic policies of the Nazi state.

Theodore M. Porter is Distinguished Professor of History and holds the Peter Reill Chair at the University of California, Los Angeles. His books include Karl Pearson: The Scientific Life in a Statistical Age, Trust in Numbers: The Pursuit of Objectivity in Science and Public Life, and The Rise of Statistical Thinking, 1820–1900 (all Princeton). He lives in Altadena, California.

Life on Mars: Imagining Martians

If you had the chance to travel to Mars, would you take it?

Astronomer David A. Weintraub thinks it won’t be long before we are faced with this question not as a hypothetical, but as a real option. Based on the pace of research and the growing private interest in space exploration, humans might be considering trips to Mars before the next century.

In his new book Life on Mars: What to Know Before We Go, Weintraub argues that would-be colonizers of the red planet should first learn whether life already exists on Mars. Just as colonization of various parts of Earth has historically decimated human, animal, and plant populations, so, argues Weintraub, will human colonization of Mars dramatically affect and likely destroy any life that might already exist on Mars. Before we visit, we need to know what – and whom – we might be visiting.

While scientists have yet to determine whether life exists on the red planet, they agree that if Martians do exist, they probably aren’t little green men. So where does our popular idea of Martians come from? Artists and writers have been imagining and depicting Martian life in a variety of ways since long before space travel was a reality. Check out these descriptions of imagined Martian life from over one hundred years ago.

Cover of The Martian, by George du Maurier

In George du Maurier’s 1897 gothic science fiction story The Martian, Martians are described as furry amphibians who are highly skilled in metalworking and sculpting:

“Man in Mars is, it appears, a very different being from what he is here. He is amphibious, and descends from no monkey, but from a small animal that seems to be something between our seal and our sea-lion….

“His five senses are extraordinarily acute, even the sense of touch in his webbed fingers and toes….

“These exemplary Martians wear no clothes but the exquisite fur with which nature has endowed them, and which constitutes a part of their immense beauty….

“They feed exclusively on edible moss and roots and submarine seaweed, which they know how to grow and prepare and preserve. Except for heavy-winged bat-like birds, and big fish, which they have domesticated and use for their own purposes in an incredible manner (incarnating a portion of themselves and their consciousness at will in their bodies), they have cleared Mars of all useless and harmful and mutually destructive forms of animal life. A sorry fauna, the Martian—even at its best—and a flora beneath contempt, compared to ours.”

“How the Earth Men Learned the Martian Language,” from Edison’s Conquest of Mars by Garrett P. Serviss

In Garrett Serviss’s Edison’s Conquest of Mars (1898), on the other hand, Martians are huge creatures, two to three times as tall as a human:

“It is impossible for me to describe the appearance of this creature in terms that would be readily understood. Was he like a man? Yes and no. He possessed many human characteristics, but they were exaggerated and monstrous in scale and in detail. His head was of enormous size, and his huge projecting eyes gleamed with a strange fire of intelligence. His face was like a caricature, but not one to make the beholder laugh. Drawing himself up, he towered to a height of at least fifteen feet.”

Edwin Lester Arnold, in Lieut. Gullivar Jones: His Vacation, published in 1905, describes Martians instead as “graceful and slow,” with an “odor of friendly, slothful happiness about them”:

“They were the prettiest, daintiest folk ever eyes looked upon, well-formed and like to us as could be in the main, but slender and willowy, so dainty and light, both the men and the women, so pretty of cheek and hair, so mild of aspect, I felt, as I strode amongst them, I could have plucked them like flowers and bound them up in bunches with my belt. And yet somehow I liked them from the first minute; such a happy, careless, light-hearted race, again I say, never was seen before.” 

“The old man sat and talked with me for hours,” from A Princess of Mars by Edgar Rice Burroughs

And in Edgar Rice Burroughs’ A Princess of Mars, published in 1917, Martians are finally depicted as the little green men of the popular imagination:

“Five or six had already hatched and the grotesque caricatures which sat blinking in the sunlight were enough to cause me to doubt my sanity. They seemed mostly head, with little scrawny bodies, long necks and six legs, or, as I afterward learned, two legs and two arms, with an intermediary pair of limbs which could be used at will either as arms or legs. Their eyes were set at the extreme sides of their heads a trifle above the center and protruded in such a manner that they could be directed either forward or back and also independently of each other, thus permitting this queer animal to look in any direction, or in two directions at once, without the necessity of turning the head.

“The ears, which were slightly above the eyes and closer together, were small, cup-shaped antennae, protruding not more than an inch on these young specimens. Their noses were but longitudinal slits in the center of their faces, midway between their mouths and ears.

“There was no hair on their bodies, which were of a very light yellowish-green color. In the adults, as I was to learn quite soon, this color deepens to an olive green and is darker in the male than in the female. Further, the heads of the adults are not so out of proportion to their bodies as in the case of the young.”

To learn more about Martians in popular culture, the history of planetary astronomy, and the scientific search for life on Mars, read David Weintraub’s Life on Mars!

David Weintraub on Life on Mars: What to Know Before We Go

WeintraubDoes life exist on Mars? The question has captivated humans for centuries, but today it has taken on new urgency. NASA plans to send astronauts to Mars orbit by the 2030s. SpaceX wants to go by 2024, while Mars One wants to land a permanent settlement there in 2032. As we gear up for missions like these, we have a responsibility to think deeply about what kinds of life may already inhabit the plane—and whether we have the right to invite ourselves in. This book tells the complete story of the quest to answer one of the most tantalizing questions in astronomy. But it is more than a history. Life on Mars explains what we need to know before we go.

Why does Mars matter?

Are we alone in the universe? Earth might be an oasis of life, the only place in the universe where living beings of any kind exist. On the other hand, life might be as common across the universe as the hundreds of billions of stars and planets that populate it. Mars is the closest habitable world in the universe where we can begin to learn about extraterrestrial life. If life is common, if the genesis of life is possible given the right environment and the necessary elemental materials, some form of life might exist right next door, on Mars, and if life were discovered on Mars that is of an independent origin than life on Earth, we could safely predict that life is common throughout the universe. Such a discovery would be extraordinary. Mars Matters.

Haven’t we already discovered life on Mars?

Maybe. Maybe not. Some astronomers believe that evidence from NASA’s Viking Lander biology experiments strongly suggest the presence of past or present life on Mars. Other astronomers believe that evidence found in a meteorite from Mars is evidence of ancient life on Mars. Still others believe that methane gas discovered in the atmosphere of Mars is evidence for life on Mars today. However, no consensus exists. None of the data is definitive that would prove or disprove the hypothesis that Mars once harbored or still nurtures life. The jury is still out.

Could life on Mars and life on Earth be related?

Could be. In order for a meteorite to get knocked off Mars and arrive on Earth, several things must happen. First, an asteroid of significant size must hit the surface of Mars and some of the debris from that impact must be lofted off the surface intact and at high speed. The impact debris kicked off the surface then must drill a hole through the Martian atmosphere and emerge above the atmosphere with a high enough velocity (known as “escape velocity”) to escape the gravitational clutches of Mars. Then that object has to end up on an orbit that intersects with that of Earth. All of these things are improbable but possible. Have they actually happened?

A meteoritic breakthrough occurred in 1982, when the leader of the 1981–1982 U.S. search party looking for meteorites in Antarctica found a tiny, unusual-looking rock now known as ALH 81005, which showed mineralogical similarities to lunar rocks. By 1983, several teams of meteoriticists, working independently, had confirmed that this specimen was, without any doubt, a lunar meteorite. For the first time, we had evidence that meteorites can come from objects as large as our Moon.

Then, in 1985, a geochemist proved that the gases trapped inside air bubbles inside EETA 79001, another Antarctic meteorite, this one collected in 1979 in the Elephant Moraine region, were a perfect match to the gases found by NASA’s Viking lander in the atmosphere of Mars. Therefore, without any doubt, EETA 79001 itself was a piece of Mars. We now know of several dozen meteorites that are, without question, of Martian origin.

If a meteorite can travel from Mars to Earth (or vica versa), then life could be transported by this vehicle from one planet to the other.

Why should you care about microscopic Martians?

Do microscopic Martians matter? Yes. Microscopic Martians, if they exist, would be astoundingly important to our understanding of life in the universe. A second genesis, life that began completely independently of terrestrial origins, might have occurred on Mars. Even if life on Mars is limited to bacterial-sized beings, buried underground or hiding deep in a crevice where they are protected from dangerous ultraviolet radiation and cosmic rays and where they can find water, those beings would teach us something of enormous importance about the existence of life beyond Earth. Life on Mars that is independent of life on Earth would send us a clear message about exobiology: life could happen anywhere and everywhere that conditions allow. Alternatively, if we find microscopic life that is DNA-based, we also receive an enormously important message about exobiology and clues about our distant, evolutionary past: such a discovery would tell us that life is easily transported across interplanetary space. Once life gets started, it can spread, and thus, whether we are Martians or the Martians are us, we’re all related. Finally, if we discover that Mars is barren and sterile, without even microscopic Martians, we will know that we are more alone in the solar system and perhaps in the galaxy and universe than many of us currently think.

How Earth-like is Mars? And does that matter?

Mars is very nearly a twin of Earth. Like Earth, Mars is a small rocky planet with a solid surface and an atmosphere.  Mars orbits the Sun at a similar distance as Earth, where the amount of solar heating is sufficient, for at least part of every year, to allow the possibility of the existence of liquid water on at least parts of the surfaces of both planets. The length of the day and night of Mars — 24 hours, 39 minutes — is extremely similar to the day/night spin (24 hours) of Earth. The obliquity of Mars (the 25 degree tilt of Mars’ rotation axis with respect to the plane of its orbit around the Sun) is almost the same as the tilt of Earth (23.5 degrees). These tilts generate seasonal changes, and the seasonal changes of Mars are very similar to the seasons we find here on Earth. The polar caps on Mars, which are mostly water ice, closely resemble the ice caps on Earth. The thin Martian atmosphere behaves like the thicker atmosphere of Earth, with clouds, frost that condenses on the surface, and winds that blow across the surface of the planet. And Mars has large reservoirs of water, just like Earth.  Yes, differences exist. The mass of Mars is smaller than the mass of Earth; the density and composition of the Martian atmosphere are different from those of Earth; Earth has a strong magnetic field while Mars does not; Mars’ water is either frozen or buried deep beneath the surface, while most of Earth’s water is either frozen or liquid and is at or near the surface.  But if you’re looking for an Earth-like planet where Earth-like forms of life could thrive, Mars is a great place to look.

Why did you decide to write this book?  Why should someone read your book?

I think, without any doubt, that humanity will colonize Mars in the near future, perhaps within a decade, and most certainly by the end of the twenty first century. When we settle on Mars, we will contaminate Mars. If any life exists there today, we almost certainly will alter or destroy it in the same way that human and animal diseases have devastated the native species on every continent and island on Earth to which human explorers have extended their reach, putting life forms that have been isolated and protected from other life forms in harm’s way. After we place human colonies on Mars, we will lose the opportunity to discover, with certainty, whether Mars ever was or still is inhabited.

We have one chance to make these discoveries, and that is the present time before we colonize Mars. I think the knowledge we might gain about Mars and Martian life before we send colonists to the red planet is so unique and valuable that we humans should, collectively, debate whether the 2020s and 2030s are the right time to send the first wave of settlers to Mars. Perhaps we should wait just a bit longer, and let robotic exploration continue until the debate about life on Mars is settled. With this book, I hope to help trigger that public debate before it is too late.

David A. Weintraub is professor of astronomy at Vanderbilt University. He is the author of How Old Is the Universe? and Is Pluto a Planet?: A Historical Journey through the Solar System. He lives in Nashville.

Russell Bonduriansky & Troy Day on Extended Heredity

ExtendedFor much of the twentieth century it was assumed that genes alone mediate the transmission of biological information across generations and provide the raw material for natural selection. In Extended Heredity, leading evolutionary biologists Russell Bonduriansky and Troy Day challenge this premise. Drawing on the latest research, they demonstrate that what happens during our lifetimes—and even our grandparents’ and great-grandparents’ lifetimes—can influence the features of our descendants. On the basis of these discoveries, Bonduriansky and Day develop an extended concept of heredity that upends ideas about how traits can and cannot be transmitted across generations. Extended Heredity reappraises long-held ideas and opens the door to a new understanding of inheritance and evolution.

Why does heredity need to be extended?

We are at an interesting moment in the history of biology. Classical genetics, molecular biology, and genomics have greatly enriched our understanding of how organisms function, why individuals vary, and how biological variation is transmitted from parents to their offspring. But, along the way, biologists have made many discoveries that can’t be shoehorned into the conventional picture. For example, every first-year biology student learns that “acquired traits” can’t be passed on to descendants, but a great deal of evidence now contradicts this conventional wisdom. Taken together, these discoveries strongly suggest that genes are not the whole story, and that heredity needs to be extended to encompass a variety of non-genetic factors that operate alongside genes.

What does extended heredity have to do with evolution?

Heredity is one of the essential ingredients required for evolution to occur. If some individuals have particular features that enable them to produce more surviving offspring, and if those features are heritable, then those features will be represented in a greater proportion of individuals in the next generation. This simple formula is the essence of Darwin’s theory, and it was developed long before the discovery of genes. But, in the 20th century, evolution came to be defined in purely genetic terms because biologists assumed that only genes could be passed on to descendants. So what happens if there’s more to heredity than genes, and if nongenetic hereditary factors operate by very different rules? As we show, extended heredity broadens our understanding of how evolution works and leads to some surprising conclusions.

Weren’t such ideas—so-called “Lamarckian” or “soft” inheritance—refuted long ago?

The history of heredity—in particular, how heredity came to be defined in exclusively genetic terms—is a fascinating story in its own right. A commonly held view is that, after a lengthy scientific debate involving numerous experiments, the evidence ultimately showed that Mendelian genes (which were later recognized as DNA sequences) are the sole bearers of heredity. The actual history is far messier. In fact, the rejection of nongenetic forms of hereditary was never well-justified by evidence or logic, and current efforts to dismiss nongenetic inheritance as irrelevant to evolution don’t fare much better. On the other hand, some of the arguments made by proponents of an “extended evolutionary synthesis” are problematic as well, and so we search for a firm middle-ground.

What would you say to a skeptic?

Many biologists are wary of such unorthodox ideas, and some simply wonder what the fuss is about. After all, evolutionary biology has been wonderfully successful without extended heredity, so why open this can of worms? But science progresses by constantly updating knowledge and reassessing ideas. Not everyone will agree with our concept of extended heredity, but we hope to at least convince skeptics that non-genetic inheritance is real and should no longer be neglected in evolutionary thinking. There is a wealth of intriguing evidence out there that challenges conventional ideas, and we should confront this evidence and see where it leads us.

Is all this just an academic debate or are there practical implications?

Heredity is extremely relevant to health and many other practical concerns. Although our primary focus is on evolution, we also consider some of the practical implications of extended heredity. For example, we are exposed in our daily lives to many substances, such as the BPA found in certain plastic products, that have been shown to affect embryonic development in other animals. Many people are now aware that maternal smoking or obesity can harm a developing foetus, but few know that paternal lifestyle and health can also affect the foetus by reprograming the genes carried in sperm. There’s a disturbing historical dimension to this as well. It’s hard to believe today, but doctors and scientists used to believe so strongly in the exclusive role of genes in heredity that they denied the possibility that toxins ingested by pregnant women—most notably alcohol—could cause congenital abnormalities. We’ve obviously come a long way since then, but the idea that our children’s health and features could be shaped, not only by the genes that we pass to them, but also by our own lifestyle choices is still not widely appreciated.

Russell Bonduriansky is professor of evolutionary biology at the University of New South Wales in Australia. Troy Day is a professor in the Department of Mathematics and Statistics and the Department of Biology at Queen’s University in Canada. His books include Biocalculus and A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution (Princeton).

Eelco Rohling: A view from the ocean for Earth Day

On April 22, we celebrate Earth Day. Mostly, we use this holiday to demonstrate support for environmental protection.

The oceans cover some 72% of Earth’s surface; this is why we sometimes call the Earth the “Blue Planet.” Yet, in a time when people are talking about “the best deals,” the oceans are getting an extremely shoddy one.

Humanity is stretching the global oceanic ecosystem to its limits. Major impacts come from global overfishing, and from the physical destruction of critical pristine environments such as coral reefs and mangrove coasts. Combined, these reduce species diversity and richness, as well as breeding potential and resilience to disease. Our impacts on coastal systems are also strongly reducing the natural protection against wave- and storm-damage. We’d be wise to be more appreciative of, and careful with, our key food supplies and protection from the elements. After all, with 7 billion of us to feed, and with almost half of these people living within 100 miles from the sea, we have it all to lose.

Yet our deal with the oceans is even worse than that. That’s because the oceans also get to be the end-station for everything transported by water, which includes plastics as well as toxic chemicals. To boot, we have for many decades unceremoniously dumped vast quantities of society’s unwanted waste products directly into the oceans. Although legal frameworks have been introduced to limit dumping directly into the sea, illegal practices are still rife. In addition, indirect dumping via rivers—whether wittingly or unwittingly—remains a major headache.

As a result of our wasteful demeanour, we are leaving a legacy of oceans (and wildlife) that are visibly filling up with long-lived non-biodegradable plastics, which leads to graphic news coverage. In consequence, plastic pollution is now being billed by some as our oceans’ biggest threat today. It’s certainly a very visible one, with up to 240,000 tons of plastic floating in the oceans. And that amount is equal to only 1% or less of the amount of plastic that is available for entering the ocean every year. This illustrates the massive potential for the plastic problem to explode out of control.

Much less visible, but just as devastating, is the pollution of our oceans with highly toxic and long-lived chemicals—especially human-made PCBs and other organic compounds, along with concentrated heavy metals. PCBs are among the very worst threats because they are so long-lived and so toxic.

Some 10% of all 1.3 million tons of PCBs produced have made it into the oceans already (that is, about 130,000 tons). While this is alarming enough by itself, there’s up to 9 times as much waiting to be released and make its way into the oceans. All we can do to stop that from happening, is prevent any stored PCBs from making it into the open environment. So far, this has been done to 17% of the stores, while 83% have yet to be eliminated.

PCBs have become widespread in marine organisms, from coastal and estuarine waters to the greatest depths of the largest ocean: the Pacific. They cause an endless list of severe health problems, deformities, hormonal unbalance, immune-system weakening, cancer, and a decrease in fertility. Like most long-lived pollutants, PCBs accumulate into higher concentrations through the food web. Their accumulated impacts in whales already drive important infant mortality, as females pass lethal amounts of PCBs to unborn or suckling calves.

Nutrient-pollution is another big issue. This may sound like a strange type of pollution. After all, wouldn’t more nutrients just lead to more happy life in the ocean? When nutrients come in reasonable amounts, then the answer is yes. But when the nutrient flux is excessive—we then talk about eutrophication—all manner of problems develop. And the flux of artificial and human and animal waste-derived nutrients is excessive in many estuaries and coastal regions. Together with ocean warming, this has caused a rapid global expansion of regions where decomposition of massive algal blooms strips all oxygen from the waters, resulting in vast “dead zones” with completely collapsed ecosystems.

Finally, there is the sinister, lurking threat of global warming and ocean acidification. The current rate of warming has been successfully documented through scientific study, and is 10 to 100 times faster than ever before in the past 65 million years. Meanwhile, ocean acidification is caused by the oceans absorbing roughly a third of our carbon emissions. By now, the oceans have become about 0.1 pH unit more acidic than they were before the industrial revolution; that is an acidity increase of 25%. Projections for a business-as-usual emissions trajectory show a 0.3 to 0.4 pH unit change by 2100. In humans, a 0.2 pH unit change results in seizures, coma, and death. Fish, and most other vertebrates, are equally sensitive.

If the changes are slow enough, organisms can evolve to adapt. But researchers are very concerned about the extreme rate of acidification. For coral reefs, the combination of warming and acidification is certainly implicated in massive bleaching and die-off events that are going on around the world already. And let’s not forget that coral reefs house one third of all oceanic biodiversity, while oceans cover more than two thirds of the Earth surface.

The Oceans, by Eelco RohlingSo here’s my plea

We really need an Earth Day, but we need an Ocean Day as well—to build awareness about  this critical part of our planet.

At a passing glance, the oceans’ problems remain hidden under a mesmerising veil of waves and reflections. We need to remind ourselves to keep looking beneath the surface, and to keep taking this critical system’s pulse, lest it dies without us knowing about it. Maybe then we will realise how urgently we need to stop using it as a dumping ground and infinite food larder. That we instead should look for sustainable ways forward, not just for life on land, but also for life in the oceans.

Our attitude going forward will make or break society. Chances are very high that a marine mass extinction will drag us, the ultimate overpopulated top consumer, along with it.

Eelco J. Rohling is professor of ocean and climate change in the Research School of Earth Sciences at the Australian National University and at the University of Southampton’s National Oceanography Centre Southampton.

Mark Serreze on Brave New Arctic

In the 1990s, researchers in the Arctic noticed that floating summer sea ice had begun receding. This was accompanied by shifts in ocean circulation and unexpected changes in weather patterns throughout the world. The Arctic’s perennially frozen ground, known as permafrost, was warming, and treeless tundra was being overtaken by shrubs. What was going on? Brave New Arctic is Mark Serreze’s riveting firsthand account of how scientists from around the globe came together to find answers. A gripping scientific adventure story, Brave New Arctic shows how the Arctic’s extraordinary transformation serves as a harbinger of things to come if we fail to meet the challenge posed by a warming Earth.

Why should we care about what is going on in the Arctic?

The Arctic is raising a red flag. The region is warming twice as fast as the globe as a whole. The Arctic Ocean is quickly losing its summer sea ice cover, permafrost is thawing, glaciers are retreating, and the Greenland ice sheet is beginning to melt down. The Arctic is telling us that climate change is not something out there in some vague future. It is telling us that it is here and now, and in a big way. We long suspected that as the climate warms, the Arctic would be leading the way, and this is exactly what has happened.

There are a lot of books out there on the topic of climate change. What makes this one different and worth reading?

I wanted to get across how science is actually done. Scientists are trained to think like detectives, looking for evidence, tracking down clues, and playing on hunches. We work together to build knowledge, and stand on the shoulders of those who came before us. It a noble enterprise, but a very human one as well. We sometimes make mistakes (I’ve made a few doozies in my time) and get off the rails. Too often, science gets twisted up with politics. I tell it like it is, as a climate scientist who was there back when the Arctic was just beginning to stir, and both watched and participated in the story of the changing north.

You’ve hinted about how growing up in Maine got you interested in snow and ice. Can you tell us a little about this?

I grew up in coastal Maine in the 1960s and 1970s when there were some pretty impressive winters. Winter was my favorite season. I was way into daredevil sledding, and spent countless hours building the iciest, slickest track possible and modifying my sled for maximum speed. I developed a reputation for building tremendous snow forts with five or six rooms connected by tunnels. We’d would go crawling through the tunnels at night and light candles in each room. Then there was the simple primal joy of watching a big Nor’easter snowstorm come through and grind commerce to halt. The craziest winter activity I got into with my sister Mary and friend Dave was riding ice floes on the Kennebunk River. I probably should have drowned several times over, but, in retrospect, I learned a lot about the behavior of floating ice. Now, this was all back in an era when most of us were free-range kids—my mom would say, “get out of the house, I don’t want to see you ‘til dinner.” So you made your own fun and it wasn’t always safe. But it prepared me very well for a career studying snow and ice.

It took you quite a few years to be convinced of a human role in climate change. Why so long?

As mentioned, scientists are detectives, and we are always weighing the evidence. For me, it was never a question of if we would eventually see the human imprint of climate change in the Arctic—the basic physics behind greenhouse warming had been understood as far back as the late 19th century. Rather, it was a question of whether the evidence was solid enough to say that the imprint had actually emerged. The challenge we were up against is that natural variability is quite strong in the Arctic, the system is very complex, and most of the climate records we had were rather short. By the late 1990s, it was clear that we were seeing big changes, but at least to me, a lot of it still looked like natural variability. It was around the year 2002 or 2003 that the evidence became so overwhelming that I had to turn. So, I was a fence sitter for a long time on the issue of climate change, but that is how science should work. We are trained to be skeptical.

What happened in the year 2007?  Can you summarize?   

In the early summer of 2007, sea ice extent was below average, but this didn’t really grab anyone’s attention. That quickly changed when ice started disappearing at a pace never seen before. Through July and August, it seemed that the entire Arctic sea ice community was watching the daily satellite images with a growing sense of awe and foreboding. Huge chunks of the ice were getting eaten away. By the middle of September, when it was all over, the old record low for sea ice hadn’t just been beaten, it had been blown away. There was no longer any doubt that a Brave New Arctic was upon us. Arctic climate science was never really the same after that.

We keep hearing about how science tends to be a male-dominated field. But the impression that one gets from your book is that this isn’t really the case in climate research. Can you comment?

I don’t know what the actual numbers look like in climate science versus, say, computer science, but in my experience,  when it comes climate research, nobody really cares about your gender. What’s important is what you know and what you can contribute. What you do see, certainly, is more female graduate students now coming through the system in STEM fields (Science, Technology, Education, Mathematics).

Are you frustrated by the general inaction, at least in the United States, to deal with climate change? 

I’m constantly amazed that we don’t take the issue of climate change more seriously in this country. We are adding greenhouse gases to the air. The climate is warming as a result. The physics are well understood. Just as expected, the Arctic is leading the way. Sure, there are uncertainties regarding just how warm it well get,  how much sea level will rise, and changes in extreme events, but we know plenty about what is happening and where we are headed. The costs of inaction are going to far outweigh the costs of addressing this issue.

Mark C. Serreze is director of the National Snow and Ice Data Center, professor of geography, and a fellow of the Cooperative Institute for Research in Environmental Sciences at the University of Colorado at Boulder. He is the coauthor of The Arctic Climate System. He lives in Boulder, Colorado.

Keith Oatley on Our Minds, Our Selves: A Brief History of Psychology

OatleyAdvances in psychology have revolutionized our understanding of the human mind. Imaging technology allows researchers to monitor brain activity, letting us see what happens when we perceive, think, and feel. But technology is only part of how ideas about the mind and brain have developed over the past century and a half. In Our Minds, Our Selves, distinguished psychologist and writer Keith Oatley provides an engaging, original, and authoritative history of modern psychology told through the stories of its most important breakthroughs and the men and women who made them.

What prompted you to write this book?

There didn’t seem to be a book about the mind that people could read and say, “Oh, that’s why I see a certain person in this way, but feel myself to be rather different,” or “So that’s what goes on in a conversation.” I wanted to write a book on psychology that throws light on everyday human life, that gives the reader a sense of important turning points in research, and that focuses on the deeper principles of how the mind works, principles that help us think about our selves and others.

We like to think that we’re in direct touch with reality, but you say that’s not quite how it is.

In a way we are in touch with reality, but the mind isn’t a place into which reality can enter through eyes and ears. It’s the other way round: we project what we know from our inner understandings onto what comes in from the senses. Think of reading. If you did not know how to read, what you would see on a page would be black bits and white spaces. But since you can read, you project meanings onto these bits and spaces. With people it’s the same. You can read other people’s minds, project your understandings onto them.

You start with the problem of consciousness. Isn’t that a bit difficult?

Consciousness may seem difficult and people have argued about it for centuries, but the basic idea is straightforward. The brain contains some 86 billion nerve cells, each of which has connections to hundreds or thousands of others. We couldn’t possibly be aware of everything that goes on as these neurons interact with each other. The brain gives us a set of conclusions from these processes. This was the theory that Helmholtz proposed. Not many people know it, but really he was the main founder of our understanding of mind. The conclusions the mind offers are what we become conscious of: “That’s what it’s like out there in the world, laid out in space, with people to meet, objects to use, places to go.” From physics we might get a different depiction, perhaps of protons and electrons and waves, but that wouldn’t be of much help to us, in our ordinary lives. The conclusions the brain offers come into our conscious awareness, from sampling patterns of light and sound, to tell us: “That’s what this person means.” Or looking back to something remembered: “That’s what happened.” Or looking forward, with a plan: “Here’s what I might do.”

You say the book is about the principles of mind. What do you mean?

The deepest principle is that the mind offers us conclusions by being able to make models of the world, and even of our own self. A clock is a model of the rotation of the earth. We use it to get up in the morning, or to go and meet a friend. With some kinds of models, we can do more: we can see what would happen if we make alterations to the model, because models are things we can change. We translate an idea, or an aspiration, into our model of the world. Then we can manipulate the model, change it, to create new states. We call this thinking. Then we translate back again, from the resulting model-states into terms of the world again, to see something in a particular way, or to say this, or to do that.

You said there are other principles, too. What’s another one?

The characteristic of our human species that separates from other animals is our ability to cooperate. From an early age, human children, but not chimpanzees, can recognize when someone is trying to do something, but isn’t quite able to, and can know how to help. A two-year-old child, for instance, can see an adult with her hands full of books who seems to be wanting to put the books into a cupboard, but because her hands are full can’t open the door. The two-year-old will open the cupboard door for this person. And children of this age start to make joint plans, for instance when they play. They don’t just play on their own, they play together. Even a simple game like hide-and-seek requires cooperation. Plans that involve goals and activities shared with others become more important than anything else for us: how to join with another in living together, how to raise a family, how to cooperate with others at our place of work for ends that are useful. This principle widens so that we humans form communities and cultures, in which what goes for the whole group becomes important. So we try to be helpful, we are upset by injustice, we don’t want to tolerate people who are destructive. This is called morality. We strive to make the world a better place, not just for our selves, individually, but for everyone.

Is human intelligence going to be overtaken by artificial intelligence?

The most recent kinds of artificial intelligence are starting to think in ways similar to how we humans think, by forming intuitions from many examples, and projecting meanings from these intuitions onto new inputs. Often, when we humans have encountered a new group of people, or a new situation, we have become antagonistic; we have reacted as if the situation is one of conflict. With newer forms of artificial intelligence, we will need to think hard, to take on what is known from psychology, history, and social science, to fashion not conflict but cooperation with these new forms.

Keith Oatley is a distinguished academic researcher and teacher, as well as a prize-winning novelist. He has written for scientific journals, the New York Times, New Scientist, Psychology Today, and Scientific American Mind. He is the author of many books, including Such Stuff as Dreams and The Passionate Muse, and a coauthor of the leading textbook on emotion. He is professor emeritus of cognitive psychology at the University of Toronto and lives in Toronto.

The Royal Institution: Science Lives Here

by Katie Lewis and Keira Andrews

RIThe Royal Institution is a scientific gem in the heart of London. It was founded in 1799 by leading British scientists of the age with the aim of bringing technology and science to the general public. On nearly any day of the year, a member of the public can take part in live events with the world’s leading thinkers, experiment in a research laboratory, and take part in hands-on masterclasses with specially trained experts. The lecture theatre at the Royal Institution is infamous; some truly remarkable scientific breakthroughs have occurred within its walls as a result of the Friday Evening Discourses where top scientists of the time would show off their research. It was here that Thomas Young established the wave theory of light; John Tyndall discovered the greenhouse effect; Humphry Davy discovered nine chemical elements; and Michael Faraday developed the electric motor and electric generator.

Ri

The Royal Institution has left—and continues to leave—a lasting legacy upon the scientific community. One of the more publically-recognised services is the Christmas Lectures that were started by Michael Faraday in 1825 and continue to this day. In today’s world these lectures come in the form of a televised Christmas broadcast aimed at children with a changing theme each year and guest speakers that range from David Attenborough to Richard Dawkins. Originally, however, the lectures are thought to have come to fruition after adults began bringing their children along to the adult afternoon courses in the early 1800s, and someone had the idea of a yearly lecture to inspire a new generation of scientists. These lectures have continued to run every year since 1825—only being put on hold between 1939 and 1942 when the majority of London children had been sent away as evacuees. The Royal Institution also holds over one hundred other events each year on a wide variety of subjects.

It is at these events that many of our Princeton University Press authors have spoken. On average, five of our authors step the boards of this famous lecture theatre each year, and talk animatedly to an audience that ranges from the curious layperson to the science graduate and above. In this, the Royal Institution has never changed; science is for everyone. In recent years, the Royal Institution, colloquially known as the Ri to mimic an element on the periodic table, has hosted Princeton University Press authors across a wide range of scientific subjects from astronomy and the evolution of the human mind, to first impressions and how to clone a mammoth. Last week, it was the turn of Professor Peter Ungar, Distinguished Professor and director of the Environmental Dynamics Program at the University of Arkansas, and author of the Ungarrecently published Princeton book Evolution’s Bite: A Story of Teeth, Diet, and Human Origins (May 2017).

In his fascinating talk, Ungar illustrated how important teeth are for understanding the story of human evolution. Ungar described how a tooth’s “foodprints”—distinctive patterns of microscopic wear and tear—provide telltale details about what an animal actually ate in the past. These clues, combined with groundbreaking research in paleoclimatology, demonstrate how a changing climate altered the food options available to our ancestors—what Ungar calls the biospheric buffet. When diets change, species change, and Ungar traced how diet and an unpredictable climate determined who among our ancestors was winnowed out and who survived, as well as why we transitioned from the role of forager to farmer. By showing us the scars on ancient teeth, Ungar made the important case for what might or might not be the most natural diet for humans.

Ungar also revealed some fascinating facts about teeth in modern humans. Orthodontic issues such as crooked teeth, overbites, and impacted wisdom teeth did not affect our distant ancestors. The reason our mouths are overcrowded lies in the modern diet: our ancestors would have had to chew hard to break up tough foods. Bone responds to strain by growing, and our tooth size evolved to fit perfectly into a jaw exposed to a hard or tough diet. Our modern diet of pizza and burgers does not provide the same challenge for our jaws, and so they are not put under the strain required to reach optimum jaw size. In some tribes around the world, there are groups of people who still eat a similar diet to our ancestors, and it is no coincidence that these people tend to, on the whole, have beautiful straight teeth.

It is amazing what you can learn from teeth; Ungar explained how toothwear shows us how dinosaur jaws moved, allowing us to build muscle onto the bones of the face, to see what they would have looked like. In this way, teeth play an important role in the reconstruction of prehistoric animals, and also the face shapes of our ancestors. Ungar’s talk was a fascinating addition to the Royal Institute’s line-up this year.

Keeping in tone with the idea behind the Christmas Lectures series, it is fascinating to see the number of young children—usually one in ten—in the audience at these adult-level general lectures. It is a benchmark of the accessibility of the Ri that it is not uncommon to see a nine year old articulating her ideas about ecosystems or an eleven year old asking for more details about CRISPR. The Institution, the lecture hall, and the people that encompass it continue to be a point of inspiration for anybody who chooses to listen.