Peter Ungar on Evolution’s Bite

UngarWe carry in our mouths the legacy of our evolution. Our teeth are like living fossils that can be studied and compared to those of our ancestors to teach us how we became human. In Evolution’s Bite, noted paleoanthropologist Peter Ungar brings together for the first time cutting-edge advances in understanding human evolution and climate change with new approaches to uncovering dietary clues from fossil teeth to present a remarkable investigation into the ways that teeth—their shape, chemistry, and wear—reveal how we came to be. Ungar recently took the time to answer some questions about his new book.

Why do paleontologists care so much about teeth? What makes them so special?

PSU: Paleontologists care about teeth because oftentimes, that’s all we’ve got of extinct species to work out details of life in the past. Teeth are essentially ‘ready-made fossils,’ about 96% mineral, so they survive the ages much better than other parts of the body. They are special because they come into direct contact with food, and can provide a bridge to understanding diet in the past. We can tease out the details by studying their size, shape, structure, wear, and chemistry. Teeth connect us to our ancestors, and them to their worlds. I like to think of nature as a giant buffet of sorts. I imagine animals bellying up to the sneeze guard on this biospheric buffet with empty plate in hand. Teeth can teach us about the choices they make; and it’s those choices that help define a species’ place in nature. As the old adage goes, you are what you eat. Teeth are important because they can help us understand relationships between animals in the past and the worlds around them, and about their—and our—evolution.

Why do we have so many problems with our teeth today? Why do we get cavities, require braces, and have impacted wisdom teeth?

PSU: Think about how extraordinary your teeth are. They have to break food, without being broken themselves, up to millions of times over your lifetime. And they have to do it built from the very same raw materials as the foods you are eating. Nature is truly an inspired engineer, and it’s remarkable they last as long and function as well as they do. But they’re not perfect. Most of us today get cavities, and many of us have crooked front teeth, and impacted wisdom teeth. This is largely because of our diets. We eat mostly soft foods, loaded with highly-processed carbohydrates, especially refined sugars. Cavities form by erosion from acids produced by plaque bacteria. Feeding those bacteria diets high in carbohydrates, especially sugars, means more cavities. Also, when we eat soft foods as children, we don’t exercise our jaws enough to stimulate the growth they need to make room for all our teeth. The result is crowded lower incisors, uppers that jut out over the lowers in the front of the mouth, and impacted third molars in the back. It’s not that our teeth are too big for our jaws, it’s that our jaws don’t grow long enough to accommodate all our teeth. Most traditional foragers that eat tougher or harder foods have longer jaws, and so don’t suffer the sorts of orthodontic problems the rest of us have.

Do other species have these problems? If not, why are we so different?

PSU: I’ve seen cavities and evidence for gum disease in some non-human primates, particularly in species that eat a lot of fleshy, sugary fruit, but they’re much rarer than in us. There are very few early human fossils that provide evidence of dental disease in our distant past either. Again, it seems to be a mismatch between our diets today, and the foods that we evolved to eat. Our teeth are not designed for hamburgers and French fries, nor to be bathed in milkshake. If you want to see evidence of that mismatch, just smile and look in a mirror.

What was your motivation for writing a popular science book?

PSU: My PhD dissertation was 654 pages, mostly focused on a quarter of a square millimeter of the surface of some incisor teeth. Most academics are so narrow in their research focus that it can be difficult to see the forest for the trees. I wrote this book to give myself the big picture, to give me an appreciation of the larger context into which my own work fits. Also, no more than half a dozen people actually read my dissertation cover to cover, and that includes my mother. Academics often feel like they’re speaking, but no one is listening. I wanted to reach a larger audience. This book at first glance seems to be about teeth – but it’s really about the biospheric buffet, and how environmental change over deep time swapped out items and choices available to our distant ancestors. The take-home message is that large-scale climate swings winnowed out the pickier eaters among us, and drove our evolution. Teeth are our window through which to see it. The most important message here is that climate changes, and species have to change to accommodate or die. That’s why we’re here. It’s a timely, important lesson.

As a scientist who has spent the last three decades studying evidence for the evolution of human diet, what do you think of today’s “Paleolithic diet” trend? And what was the ancestral human diet, anyway?

PSU: I’m not a fan. I like pizza and bagels too much. Still, there’s little doubt that our ancestors did not eat such things; so it makes sense that a discordance between the foods we evolved to consume and what we fuel ourselves with today can wreak havoc on our bodies. Try putting diesel in a car built to run on regular gasoline (actually, don’t). And people do lose weight when they cut refined carbohydrates and processed sugars from their diets. We could well benefit from eating more like our Stone Age ancestors, with menus like those in some popular diet books—you know, spinach salads with avocado, walnuts, diced turkey and the like. I am not a nutritionist, and cannot speak with authority about the nutritional costs of benefits of Paleolithic diets—but I can address their evolutionary underpinnings. Think about it this way. Any diet that drains the body of fat reserves means not meeting daily caloric needs. It is difficult to believe that nature would select for us to eat only foods that don’t provide the nutrients required to maintain the body. In fact, the whole idea of the Paleolithic diet is problematic. Even if we could (and we can’t) reconstruct the glycemic load, fatty acid, macro- and micronutrient composition, acid/base balance, sodium/potassium ratio, and fiber content of foods eaten at a moment in time in the past, the information would be meaningless for planning a menu. All these nutrients varied with food availability over space and time, as items on the biospheric buffet table were swapped in and out, so focusing on a single point in our evolution is futile. We’ve been a work in progress for millions of years. What was the ancestral human diet? The question itself makes no sense.

Peter S. Ungar is Distinguished Professor and director of the Environmental Dynamics Program at the University of Arkansas. He is the author of Teeth: A Very Short IntroductionMammal Teeth: Origin, Evolution, and Diversity and Evolution’s Bite: A Story of Teeth, Diet, and Human Origins.